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In a brief review of the theory of pseudo-Casimir interaction in nematic liquid crystals, we
describe long- and short-range uctuation-induced forces in these materials and discuss the
role of the anchoring strength in this context. We also analyze the pretransitional behavior
of the interaction in the vicinity of the clearing point.
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I Introduction

The discovery of polymer dispersed liquid crystals in

the eighties [1] has put the liquid crystal display tech-

nology in a new perspective. Since then, the classical

design of a display cell based on a liquid-crystalline ma-

terial sandwiched between two transparent electrodes

has been complemented by a device consisting of a com-

posite material, e.g., a dispersion of micron-size liquid-

crystalline droplets in a solid polymer matrix. The

undisputed advantages of this concept in some electro-

optical applications have boosted the research in the

�eld of microcon�ned liquid crystals, which has evolved

into one of the most vivid branches of the liquid crystal

science.

The interest in the physics of severely con�ned sys-

tems has raised a number of both experimental and the-

oretical issues which did not seem very important in the

past. One of them has to do with the mechanical sta-

bility of such systems, which is invariably related to the

structural interaction mediated by the liquid-crystalline

material. Were liquid crystals perfect, disordered liq-

uids, they would give rise to the van der Waals force

only. But they are orientationally ordered rather than

structureless, and this results in an additional interac-

tion between the walls of the host medium, which is

induced by the liquid crystal itself.

The experimental studies of the structural force in

liquid crystals are typically carried out by a surface

force apparatus [2, 3, 4, 5], and in general they have

been found to be consistent with the mean-�eld model

of the interaction. However, there are also indications

that the mean-�eld description of the systems studied

may not be entirely adequate and that the uctuation-

induced force could play a detectable role [5].

Until the beginning of this decade, there was no ex-

plicit interest in uctuation-induced force between solid

objects immersed in liquid crystals, although its mech-

anism | the Casimir e�ect | has been well-known

for half a century [6]. In the �rst theoretical study of

the phenomenon, the long-range force due to thermal

uctuations of the order parameter in nematic, smec-

tic, and columnar phase has been calculated [7, 8], and

these results constitute the skeleton of the theory of the

pseudo-Casimir interaction in liquid crystals.

In this paper, we concentrate on the uctuation-

induced force in the nematic phase and in the vicin-

ity of the clearing point. First we discuss the dom-

inant long-range contribution to uctuation-induced

force (Sec. II) and the subdominant short-range contri-

bution (Sec. III). We also describe the pretransitional

behavior of the structural force at the clearing point in

a thin �lm bounded by inert substrates. Then we ad-

dress to the role of anchoring (Sec. IV) and �nally we

compare the uctuation-induced force to the mean-�eld

interaction (Sec. V). In Sec. VI we conclude the paper



and outline some of the open problems in the �eld.

II Long-range force

Deep in the nematic phase, the most important param-

eter of the orientational liquid-crystalline order is the

average direction of the molecules described by the di-

rector �eld n(r). The energetic cost of deformation of

the director �eld is given by the Frank elastic energy

c
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where K11;K22 and K33 are the splay, twist, and bend

elastic constant [9]. The coupling between the orien-

tation of material and the con�ning substrates is de-

scribed by the anchoring energy, which is usually mod-

eled by the Rapini{Papoular ansatz

HS [n(r)] = �
1

2

Z
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2
dS; (2)

where G is the anchoring strength and k is the pre-

ferred orientation of the director �eld at the substrate,

the so-called easy axis. The total Hamiltonian is, of

course, a sum of the bulk and the surface contribution:

H [n(r)] = HV [n(r)] +HS [n(r)].

Let us now assume that the nematic sample consid-

ered is bounded by two parallel identical plates sepa-

rated by d (Fig. 1). In this case the equilibrium con�g-

uration of the director �eld, n0, is uniform, because the

preferred orientations of n at the two plates coincide.

The mean-�eld free energy FMF = H [n0] is equal to 0,

which implies that the corresponding thermodynamic

force de�ned by

FMF = �

�
@FMF

@d

�
V;S

(3)

also vanishes. This exempli�es the main property of all

mean-�eld forces: they occur only in geometries char-

acterized by a competition between surface-induced or-

der and bulk order | or, more precisely, by a deformed

equilibrium con�guration that results from this frustra-

tion.

Figure 1. The system considered consists of two identical
parallel plates immersed in a nematic liquid crystal.

The uctuation-induced forces, on the other hand,

are present in every con�ned geometry, no matter

whether the equilibrium con�guration of the liquid-

crystalline (or any other) system is uniform or not.

The uctuation-induced forces result from the bound-

ary conditions imposed by the substrates, which modify

the spectrum of collective uctuations. The free energy

of constrained uctuations between the substrates is

di�erent from the free energy of uctuations in an un-

constrained surrounding medium, and this gives rise to

a net interaction of the substrates.

How does one calculate the interaction free energy?

The free energy of the thermally excited uctuations

around the mean-�eld state, �n, is determined by their

partition function. Within the classical statistical me-

chanics, the partition function of the uctuating direc-

tor �eld is given by the functional integral over all con-

�gurations of �n that satisfy the boundary conditions

exp(�FCAS=kT ) =

Z
D(�n) exp (�H [�n]=kT ) ; (4)

where k is the Boltzmann constant and T is the tem-

perature [10]. The free energy consists of the bulk and

surface contribution, which are proportional to the vol-

ume and the surface area of the system, respectively,



and of the interaction free energy, which is de�ned sim-

ply as the residuum.

A detailed discussion of the methods of calculation

of the partition function is beyond the scope of this re-

view. At this point, we shall merely quote the result in

the strong anchoring limit, which means that the uc-

tuations of the director �eld must vanish at the two

plates. In this case the uctuation-induced interaction

free energy is given by

FCAS = �
�(3)kTS

16�d2

�
K33

K11

+
K33

K22

�
; (5)

where S is the area of each of the plates and �

is the Riemann zeta function, �(3) being equal to

1:20205690 : : : [7, 8]. The corresponding force reads

FCAS = �
�(3)kTS

8�d3

�
K33

K11

+
K33

K22

�
: (6)

This attractive long-range force represents the dom-

inant part of the pseudo-Casimir e�ect in nematic

phase, and is completely analogous to the high-

temperature limit of the electromagnetic Casimir in-

teraction. Apart from the factor that accounts for the

elastic anisotropy of the liquid crystal and clearly iden-

ti�ed the contributions of splay-bend and twist-bend

modes, the amplitude of the interaction is universal,

and the Boltzmann factor witnesses the thermal ori-

gin of the force. This result was subsequently extended

to account for the ruggedness of the interacting sur-

face [11, 12].

III Short-range force

The above discussion gives an outline of the most im-

portant manifestation of the pseudo-Casimir e�ect in

the nematic phase, which results from director uctu-

ations. However, the true nematic order parameter is

an irreducible second-rank tensor rather than a head-

less vector n, and accomodates the degrees of order and

biaxiality and the orientation of the secondary director

on top of the orientation of the director itself (Fig. 2).

Unlike the director modes, the three additional com-

ponents of the order parameter do not arise from the

broken continuous symmetry of the nematic phase and

their Hamiltonians are not purely elastic.

Figure 2. The �ve nematic degrees of freedom can be vi-
sualized by a block such that the anisotropy of its sides
is proportional to the eigenvalues of the order parameter.
Fluctuations of the degree of order are represented by the
breathing mode (a), biaxial uctuations modify the ratio of
the short sides and rotate the block about its long axis (b),
and director uctuations correspond to the rotation of the
block about the two short axes (c).

The nondirector degrees of freedom are most im-

portant in the vicinity of the nematic-isotropic phase

transition, which is | at the phenomenological level

| usually described by the Landau{de Gennes theory.

The cornerstone of the Landau{de Gennes approach is

the (truncated) Taylor expansion of the free energy den-

sity in terms of scalar invariants of the order parameter

Q(r), which is usually given by

c

hV =
1

2
A(T � T �) trQ2 �

1

3
B trQ3 +

1

4
C
�
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2
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where A;B; C, and L are material constants, T � is the

supercooling temperature. As implied by the presence

of a single deformational term [which corresponds to the

one-elastic-constant approximation of the Frank Hamil-

tonian, Eq. (1)] the details of the liquid-crystalline elas-

ticity are not essential in the vicinity of the phase tran-

sition. The elastic constant, L, is proportional to the

average Frank elastic constant K divided by the square



of the degree of order. | In a similar fashion, the

Rapini{Papoular anchoring energy density can be gen-

eralized to

hS =
L

2�
tr (Q�Q0)

2 ; (8)

where � is the so-called extrapolation length which con-

trols the strength of the anchoring, and Q0 is the pre-

ferred value of the tensorial order parameter at the sub-

strate.

In a suitable base, the above formalism reduces to

the analysis of �ve uncoupled scalar degrees of free-

dom [13]. In the uniaxial nematic phase the analysis

is even simpler, because the two biaxial modes are de-

generate and so are the two director modes. In the

one-elastic constant approximation, the generic form of

the Hamiltonian that covers all �ve degrees of freedom

[here denoted by b(r)] reads

c

H [b(r)] =
L

2

�Z �
(rb)2 + ��2b2

�
dV + ��1

Z
b2 dS

�
; (9)

where � is the temperature-dependent correlation length characteristic of a particular type of uctuations. In the

case of uctuations of the degree of order, � is given by

�No = �0

�
9

4

�
1 +

p
1� 8�=9

�p
1� 8�=9

�
�1=2

; (10)

d

where �0 =
p
27LC=B2 � 10 nm is the bare corre-

lation length1, and � is the reduced temperature such

that � = 0 corresponds to the supercooling limit and

� = 1 corresponds to the phase transition temperature.

The correlation length of the biaxial uctuations reads

�Nb = �0

�
27

4

�
1 +

p
1� 8�=9

���1=2
; (11)

whereas the correlation length of the director modes |

the broken symmetry variable of the nematic order |

is, of course, in�nite.

This Hamiltonian also applies to director uctua-

tions in an external electric or magnetic �eld: by di-

viding the uctuations into splay-bend and twist-bend

modes, the vectorial Hamiltonian [Eq. 1] can be split

into two uncoupled partial Hamiltonians, each operat-

ing on a scalar �eld. In this case, � stands for elec-

tric or magnetic coherence length,
p
2K=�a�0E2 andp

2�0K=�aB2 (where K is the elastic constant, and �a

and �a are the anisotropies of the dielectric permittiv-

ity and of the magnetic susceptibility, respectively) [9].

Moreover, the same Hamiltonian also describes uctu-

ations in the isotropic phase, where all �ve modes are

degenerate and their correlation length is given by

�I = �0�
�1=2: (12)

With the Hamiltonian spelled out, we can calculate

the interaction free energy. Again, we will just give the

result [14] which reads

c

FCAS =
kTS

8�2

Z
1

0

ln

0
@1�

 p
��2 + q2 � ��1p
��2 + q2 + ��1

!2

exp
�
�2
p
��2 + q2d

�1A q dq; (13)

1The meaning of the bare correlation length becomes clear as soon as � = 1 is substituted in Eqs. (10) and (12): �0 is the value of
the correlation length of uctuations of the degree of order in nematic and in isotropic phase at the clearing point.



and is analogous to the screened van der Waals inter-

action between two semiin�nite dielectrics separated by

an electrolyte [15]. In the following, the most important

aspects of this interaction will be discussed briey.

Let us �rst �nd out how a �nite correlation length

changes the uctuation-induced interaction! Assume

that the anchoring is strong, i.e., � = 0, and that

d � �. In this case, the uctuation-induced force is

short-range:

FCAS = �
kTS

4��2d
exp(�2d=�); (14)

which corresponds to the interaction induced by the

three non-director modes in the nematic phase (and

also by the director modes in an external aligning �eld)

and by the uctuations in the isotropic phase. The

other limit, d� �, recovers either splay-bend or twist-

bend mode contribution to the long-range interaction

[Eq. (6)] within the one-elastic-constant approximation,

��(3)kTS=8�d3.

Figure 3. Pretransitional behavior of the uctuation-
induced force in a nematic liquid crystal is depicted most
transparently by plotting the ratio of the temperature-
dependent total uctuation-induced force and the director
modes' force. On approaching TNI from the nematic phase
(solid line), the range of the short-range component of the
uctuation-induced force increases and in typical materials
it reaches � 10 nm at the clearing point. In the isotropic
phase (dashed line), the uctuation-induced force is entirely
short-range and its correlation length decreases on heating.

The interaction free energy [Eq. (13)] describes the

continuous crossover from long- to short-range force or

vice versa, which occurs, for example, on approaching

the nematic-isotropic transition. The overall pretran-

sitional ampli�cation of the uctuation-induced force

is mainly due the increase of the correlation length of

the uctuations of the degree of order, and is most

pronounced in materials with small latent heat of the

transition. The pretransitional behavior of the pseudo-

Casimir force can be illustrated by plotting the ratio of

the total uctuation-induced force and the long-range

director modes' force which dominates deep in the ne-

matic phase (Fig. 3). On approaching the clearing

point from below, the range of the short-range com-

ponent of the uctuation-induced structural force in-

creases and in typical materials it reaches � 10 nm at

TNI . In the isotropic phase, the pseudo-Casimir force is

entirely short-range, and its range decreases on heating.

Were the transition continuous, at the critical tem-

perature the pseudo-Casimir force would be larger by

50% than deep in the nematic phase, because on top

of the two director modes that dominate the pseudo-

Casimir e�ect in nematic liquid crystals, there would be

an additional degree of freedom | the degree of order

| characterized by long-range correlations. However,

the nematic-isotropic transition is not continuous, and

a signi�cant temperature variation of the uctuation-

induced force could be observed only in the superheated

or supercooled regime.

We must stress that the formalism presented is quite

general and also applies to other phase transitions, and

in most liquid-crystalline materials that exhibit smec-

tic C and smectic A phase, the transition between the

two is actually continuous. In such a case the phase

transition is associated with the critical slowdown of

the soft mode, and a clear and strong pretransitional

ampli�cation of the pseudo-Casimir force is expected.

IV Anchoring

Having analyzed the role of the correlation length in the

uctuation-induced interaction, we can proceed with a

discussion of the e�ect of anchoring. The �rst impor-

tant fact concerning the role of anchoring is quite ob-

vious: the prefactor to the exponential in Eq. (13) is

equal to 1 both for �! 0 and for �!1, which means

that an in�nitely weak anchoring gives rise to the same

pseudo-Casimir force as an in�nitely strong anchoring.

This is no surprise, since the two limiting cases di�er

only in the type of the boundary conditions but not in

the spectrum of uctuations.

What about the anchoring strengths in between

these two limiting cases? The e�ect of anchoring can



be represented by the reduction factor de�ned as the

ratio of the uctuation-induced force at �nite � and its

strong-anchoring counterpart:

R(d=�; �=�) =
FCAS(d; �; �)

FCAS(d; �; � = 0)
: (15)

In the case of in�nite correlation length, which corre-

sponds to director modes, R depends only on the ra-

tio d=�, and is depicted in Fig. 4. Both for weak

(d=� � 1) and strong anchoring (d=� � 1), R ap-

proaches 1, and in between it reaches a minimum of

0.077 at d=� = 1:230. It can be shown that for

d=�� 1, R is approximately given by 1� 6�=d, which

implies that the �nite-anchoring-strength correction to

the long-range d�3-force is proportional to d�4.

Figure 4. Reduction factor of the interaction induced by the
director modes reaches a minimum of 0.077 at d=� = 1:230.
The asymptotic expansion of R for large d=� is given by
1� 6�=d (dashed line).

If the correlation length of uctuations is �nite, R

depends both on d=� and �=�, and may be either a

monotonic or a non-monotonic function of the inter-

plate separation (Fig. 5). In case of rather strong an-

choring, i.e., for �=� < 1, the reduction factor descends

from 1 to a minimum and then increases to the satu-

rated value, whereas for weak anchoring or �=� > 1 it

decreases monotonically. As shown in Fig. 4, the satu-

rated value of R does not change if �=� is substituted

by �=�, and for large and small �=�, R(d=� ! 1) is

given by 1� 4�=� and 1� 4�=�, respectively. The fact

that R saturates for large d=� implies that asymptoti-

cally the functional form of the short-range interaction

remains unchanged and that the anchoring merely re-

duces its magnitude. | The case �=� = 1 is clearly

quite special, and is characterized by a reduction factor

that does not level o� at large d=�'s. It can be shown

that it falls o� approximately as �2=2d2, so that in this

particular case the uctuation-induced force is given by

�(kTS=8�d3) exp(�2d=�).

Figure 5. Reduction factor for uctuations with �nite corre-
lation length for �=� = 0:1; 0:5; 1; 2; and 10: in case of rather
strong anchoring, R is a nonmonotonic function of the re-
duced distance, d=�, and in case of rather weak anchoring
R decreases monotonically towards the large d=� limit.

V Fluctuation-induced forces vs.

mean-�eld forces

It has been mentioned already that the pseudo-Casimir

forces are present in any con�ned system, whereas the

mean-�eld interaction only occurs in geometries char-

acterized by deformed order parameter �eld. In the ne-

matic phase, the mean-�eld force is largely determined

by the distortion of the director induced by nonplanar

con�ning geometry or by the hybridity of the anchor-

ing. This interaction is repulsive and roughly propor-

tional to d�2, which means that it dominates in large

systems. In small cavities, on the other hand, pseudo-

Casimir interaction should prevail since it is, as shown

above, proportional to d�3.

The basic idea behind the discussion on the rela-

tive importance of mean-�eld and Casimir forces re-

lies on the notion that the director �eld in severely

con�ned and irregular geometries such as (aero)gels,

porous glasses, etc. is distorted because of the frustra-

tion induced by the mismatch of the easy axes across

the bounding surface. Nevertheless this is usually not



the case: below a certain void size, it may be energet-

ically very costly to distort the director �eld and min-

imize the anchoring energy, and an undistorted liquid-

crystal structure is preferred instead [16]. Uniform di-

rector con�gurations might be rather ubiquitous in sys-

tems with characteristic size up to, say, 100 nm | and

since the mean-�eld elastic interaction is absent in uni-

form director con�gurations, the uctuation-induced

stuctural forces are probably more important than it

seemed at �rst.

This argument brings us to another interesting as-

pect of the nematic order in highly constrained liquid

crystals. In the vicinity of the nematic-isotropic phase

transition temperature, the system can avoid the ener-

getic penalty of an unfavorable director orientation at

the wall by reducing the degree of order in the subsur-

face layer. In other words, the deformation of the direc-

tor �eld is replaced by the deformation of the pro�le of

the degree of order. This mechanism, which is expected

to be most prominent in systems characterized by large

anchoring energy, immediately raises the question of

uctuation-induced interaction in heterophase liquid-

crystalline structures. In a forthcoming paper, we will

address this aspect of the pseudo-Casimir e�ect by an-

alyzing the phenomenon in systems characterized by a

surface-induced degree of order substantially di�erent

from the degree of order in the bulk of the sample [17].

VI Conclusions

We have discussed several theoretical aspects of the

uctuation-induced interaction in nematic �lms and

pointed to some of the systems where this interaction is

expected to represent an important if not the dominant

part of the structural force.

The theory of the pseudo-Casimir force in liquid

crystals extends well beyond the topics described in this

paper and is still, of course, far from being complete.

Some of the most interesting issues in the �eld, such as

uctuation-induced interaction in prenematic and pres-

mectic systems, distorted nematic structures, polymer

liquid crystals, etc., will be addressed in the future.
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