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Abstract

Multilayers of charged lipids immersed in distilled water swell to whatever dilution allowed them by the available
volume of solvent. Multilayers of the same lipids on a solid surface will imbibe only a small amount of water from a
vapor, even from a 100% relative-humidity vapor. We argue that the essential difference is in the extra work needed
to create a vapor/multilayer interface. For stiff, tightly packed multilayers, this interfacial energy is an additive
constant of little consequence. But, in liquid water, multilayers swell to a softness where thermal excitation creates a
rippled surface; the surface energy goes as the contour area not as the flat area of projected surface. The contour area
grows as the multilayer swells. Vapor/liquid surface tension creates a “hard” surface that quells ripples and, usually,
pulls the multilayer back to tighter packing. Tension can act to enhance direct attractive bilayer—bilayer forces such
as weak van der Waals interactions to create new energy minima at very close spacings. These new energy minima
might explain the limited swelling of charged lipids on substrates. What is remarkable is the long range and the
strength of surface-tension perturbation on layered systems. In our statistical-thermodynamic formulation, bilayer
motion is treated as the sum of undulations or waves that can pervade the entire multilayer. Disturbance of the
surface can reach inward to distances comparable to the lateral extent of the multilayers. We use measured osmotic
compressibility and bending rigidity to reveal the qualitative difference in affinity for water of multilayers in liquids
and those on substrates exposed to vapors of the same chemical potential. © 1997 Elsevier Science B.V.

1. Introduction

Two different models of “smectic” systems ([1-
3]) have argued that in lamellar multilayers there
is a “mechanical van der Waals force” acting to
suppress swelling of systems bounded by high
energy surfaces. The idea is that the membranes
will necessarily undulate in highly swollen multi-
layers. Any undulation of the surface layer neces-
sarily creates a contour surface area greater than
that of a stiff flat layer [3]. A surface tension or

* Corresponding author.
' On leave from J. Stefan Institute, Ljubljana, Slovenia.

0927-7757/97/$17.00 © 1997 Elsevier Science B.V. All rights reserved.

PIT S0927-7757(97)00052-6

additional work needed to create or to stiffen the
air/multilayer surface will necessarily increase the
cost of creating such undulations; their magnitude
will be suppressed compared to what will occur
without that surface perturbation.

The remarkable and surprising result of recent
formulations is that this suppression can extend
into the multilayer far from the layer at the surface.
One immediate consequence of this extended sup-
pression is that multilayers will not swell as much
as they could when their surfaces are free to move.
The action of a high energy bounding surface
might even explain the qualitative difference in
multilayer swelling in liquid solution vs in vapors,
the “vapor pressure paradox” ([3]).
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It has been a long-neglected question why
charged bilayers, for example, immersed in distilled
water will take up essentially infinite amounts of
water ([4,5]): the same bilayers adsorbed to a
solid surface will imbibe only a small amount of
water from a 100% relative-humidity vapor ([6,7]).
Neutral melted-chain phosphatidylcholines will
take up to ~ 50 wt% water from the liquid ([8,9])
but will accumulate only 30 wt% from a 100% r.h.
vapor ([6,7,10]). Even for lipids in a frozen-chain
“gel” phase, there is a qualitatively different
response to liquid vs vapor even though the water
is applied at the same chemical potential ([11]).

We have now found a way to connect the
multilayer spacing w to be seen in a substrate-
deposited multilayer with the surface energy » that
acts at the multilayer/vapor interface. We compare
this bilayer repeat spacing w with the larger one
found for multilayers of the same lipid material
but immersed in solution and subject to the same
osmotic stress of water.

We make this connection by using a thermo-
dynamic formalism by focusing on the thermally
driven undulations that occur throughout a multi-
layer made of a finite number of layers adsorbed
to a solid surface. We look in particular at those
motions that are sensitive to changes in surface
tension between the top-most layer and the
medium — vapor or liquid. The multilayer bending
energy and compressibility perpendicular to the
layers that determine the magnitude of these undul-
ations are extracted from osmotic stress measure-
ments on multilayers in solution. It is possible to
construct a parallel between the traditional Laplace
hydrostatic pressure on a curved surface and a
dehydration pressure on a surface whose roughness
is due to thermally driven undulation.

By working through two sets of calculations
based on actual experimental systems, we attempt
to establish a rational basis for systematic further
measurement. The product of the bilayer bending
stiffness and the multilayer compressibility modu-
lus is key to the sensitivity a multilayer will show
to surface tension. Softer systems undergo larger
surface undulations which, in turn, become more
costly and unlikely with high surface tension.
Because of the way surface and bulk energies are
coupled in layered systems, most systems will pay

the price of compressing the stack of layers in
order to smooth the surface layer and lower their
surface energy.

2. Method

It is easiest to understand the free energy G of
a multilayer, adsorbed to a solid surface (Fig. 1)
and exposed to a vapor, via its dependence on two
pertinent variables: 7, the applied osmotic
stress, and 7, the surface energy per area between
the multilayer and the vapor above it.

We think about changes dG(/1,,,, 7) in free
energy as,

dG(Hosm s.))) = d'}' ( 1 )

oG
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The coefficient (6G)/(¢11,m)l, has units of
volume and is, specifically, the volume of water
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Fig. 1. Multilayer of N layers adsorbed onto a solid substrate
and exposed to water vapor. The mean spacing between layers
is w so that the total thickness of water in the multilayer is D=
Nw. For mathematical brevity, the thickness of the bilayer itself
1s treated as zero. The activity of the vapor is expressed in terms
of equivalent osmotic stress, I1,,,.. (A change dIT,, in osmotic
stress is related to the change in the chemical potential of water
Allyarer bY @ factor — v, dityaer = — vy, A, wWhere v, is the
molecular (or molar) volume of water. The equivalent osmotic
stress is related to the relative humidity p/p, by I1..,=
—(kT/v,) In(p/p,).) The surface tension y acts only on the
topmost (mono)layer, exposed to the vapor. Computed encrgies
will be given per unit area projected on the (flat) substrate. (In
the Appendix A, the full multilayer is taken as having lateral
dimensions of L x L rather than the section shown here.) The
surface energy goes as the rippled, contour area with a surface

energy density 7. Undulatory modes are those degrees of free-
dom allowed to the whole sample.
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Va=Vo{llysm, 7) that can be added or removed
either under osmotic stress or by surface-tension
restriction of undulations; (6G)/(éy)|y,,, has units
of area, specifically the full area of the vapor-
exposed multilayer surface?.

dG(Hosm a?) = Vw (Hosm s}") d]]osm + Alotal(”osm ’V) d}'
(2)

This area A, is the sum of L2, the projected
flat area of the multilayer, and the extra area due
to rippling. L? is constant. The contour area
depends on applied stress and tension; it is crucially
interesting to the vapor suppression of swelling.
The lateral extent L is much greater than thickness
D. For present purposes, it can be imagined as
having an indefinitely large value. We will concen-
trate therefore on the relative excess area
A.=A[(,,,7). This is the difference between the
total area, A1, and projected area, L?, divided
by L% A is the excess, contour area per unit
projected area.

Ac=(Atotal_L2)/L2 (3)

This definition allows us to concentrate on that
part of the surface that changes with tension. From
this point on we treat the free energy G(/, ¢, 7)
as per unit projected, flat area.

Since the order of differentiation doesn’t matter,
the cross derivatives in G(I1,,,,y) are equal.

’G G

—= : (4)
aHosm oy 8'}' C‘;Iyosm

This identity allows us to create an instructive
relation between the sensitivity of area A.(em, )
to osmotic pressure and the sensitivity of water
volume V({1 sy,y) to tension y.

oV, 0A,
oy Con

(5)

Hosm osm Y

21t would be a happier world if the signs in front of the V,,
and A, terms were obvious. They should be here.
Nevertheless some comment might be helpful. The free energy
G is to be considered the work of creating the multilayer. Any
increase in the energy of y of exposed surface A4, will necessary
increase the cost of creating that surface.Similarly if a volume
of water V', has been collected and the osmotic squeezing force
11, has been increased, then there is an increase in the work
needed to cellect that volume.

This Maxwell cross-relation shows the balance
between surface and volume work. If a multilayer
is stiffened by an increased osmotic stress, the
amplitude of the undulatory surface is decreased.
Conversely, if there is an increase in the tension
on those undulations, the volume of water in the
undulation-swollen bilayer will change.

That part of the multilayer area that depends
on surface tension y is (Appendix A, Egs. {(A29)
and (A30),

oG
6';,,

= + Ac(”osm "V) (6)

Hosm
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D is the total thickness of water in the multilayer,
N layers x water spacing w. B is the compressibility
modulus, B(w)= —w(0H ,/éw); K, is the per-
volume bending modulus k./w where k. is the
bending modulus of a single layer (Appendix A,
Egs. (A2) and (A3). (For succinctness, the actual
physical thickness of the bilayer is taken to be
zero; this thickness does not change detectably
under low osmotic stress conditions to be consid-
ered here ([12,8,13]).

2.1. Sensitivity of repeat spacing to surface energy

Because osmotic stress measurements on multi-
layers are calibrated to measurements of repeat
spacing to total water volume ([8]), we use the
approximation V,~Nw omitting explicit depen-
dence of water volume ¥V, on contour area. The
instability of a multilayer subject to surface tension
v 1s discussed as the sensitivity of water spacing w
to changes in y. We re-write the Maxwell relation
Eq.(5) as

oV, ow

oy

04,
o oI

y24 5})

(7)

7
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This relation gives the change in w with y as,
ow kT Grax OVK B
6V Hosm N 8TEN ( v KCB+‘Y)2 anosm g

Since VK,B=VK_.(w)B(w) is a material property
built from osmotic stress measurements on multi-
layers in liquids, it and its I, derivative are
taken as a bulk property independent of ;.
\V K (w)B(w) appears as a kind of natural unit of 7.

In X-ray scattering from lamellar systems this
VK (w)B(w) is used as a disorder parameter as
first suggested by Caillé [14]. It is used to describe
the shape of X-ray diffraction peaks when layers
undulate (see also Refs. [10], [15], [16] and [17]).

(8)

3. Results

We examine the swelling pressure, structure and
packing energies of two different kinds of lipids
whose material properties have been measured in
solutions with osmotic stress. Those material prop-
erties will be introduced into expressions for multi-
layers immobilized onto a solid substrate and
exposed to a vapor that not only sets the chemical
potential of the water but also creates a tension y
at the vapor/multilayer interface. In this case, the
multilayer is between the “rock” of the substrate
and the progressively “harder place” of a surface
under tension. Qur source data are the osmotic
stress vs water spacings measured for typical phos-
pholipids in solution (e.g. [8,9]).

There are limited data on the spacing of lipids
immobilized on substrates but immersed in liquid
water rather than vapor. One report [18], on
phosphatidylcholine in this condition, states that
the multilayer swells to the same spacings that it
shows when completely immersed in water
(although after days the lipid disperses into the
excess-water bath). We will use this information
to say that the zero-tension “y=0" situation here
is for a material that has the same properties as
lipid in bulk water. (Since we are looking mainly
at changes in multilayer spacing with changes in
v, this assumption about the y=0 reference state
is probably not critical.)

Computations are for a 30-angstrom cutoff wave
Vector, gy, =27/30 A. This minimum wavelength

is chosen to be comparable to the bilayer thickness.
This choice is to ensure that a continuum model
is used only for the mesoscopic dimensions of
bilayer structure. A different g¢y,, would change
the magnitude of estimated fluctuations but would
not change the qualitative nature of the response
to y. We work with multilayers of N=100 layers.
For present purposes, parameters used are to be
considered illustrative only. The individual bilayer
bending elasticity coefficient is taken to be
k.=25kT=10""erg [19].

3.1. Phospatidylcholine (PC) multilayers on a solid
substrate, tension-induced contraction

For a typical zwitterionic melted-chain phos-
phatidylcholine in solution there is an exponential
repulsive force 17, e™ """, with [I,=10""%erg
e¢m 3 and J,=2.1 A ([8] Table 1) which works
against a van der Waals attraction. Here, this
van der Waals force/area is given the form for the
interaction between planar layers of thickness ¢,
separation w:

o Apgar [ 1 2 1 J
v W)= - +
W 6n Lw® (w+0)?  (w+21)

With a Hamaker “constant™ of 6 x 10™* erg and
a hydrocarbon thickness =30 A ([8] Table 1;
[20]), this attractive pressure balances the hydra-
tion exponential at w~ 26 A under zero osmotic
stress where it creates an energy minimum
~0.01 erg cm 2 deep ([21]).

The pressure vs spacing is shown in Fig. 2 where
attraction and repulsion balance at approxi-
mately 26.3 A.

The compressibility modulus B(w) = —w(01 o/
éw), Fig. 3, maintains an exponential dependence
to a separation significantly larger than the repul-
sive range of 7I(w). It changes sign at a separation
of about 30.4 A, 4 A more than the position for
the zero in pressure.

At the same time, the disorder or Caillé parame-
ter ([14]) VK. (w)B(w) drops monotonically to
zero near d=30 A. (Fig. 4) This function has units
of surface tension. Formally it always appears as
a ratio y/VK_B or a sum VK B+7. It is a natural
unit for measuring the importance of surface
energy. For this reason, we expect significant sur-
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Fig. 2. Osmotic stress 71, measured on neutral phosphatidyl-
choline multilayers in solution. The stress as plotted here uses
a form fitted to the data rather than the data points themselves.
This fitted form will be used to derive multilayer compressibility
B(w)= —w(el osm/Cw) as well as to compute the response of
the material to surface-tension perturbation. The fitted osmotic
pressure curve approaches a minimum at ~26 A, the result of
balancing exponential repulsion and power-law attraction.
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Fig. 3. Multilayer compressibility derived from osmotic stress,
B(w)= —w(dI,,,/0w). Note the shift in the location of the
minimum to near 30 A separation.

face tension perturbation for those separations
where y is comparable to or greater than
VK. (w)B(w).

To within an additive constant, the energy of
interaction E(w) is the integral of osmotic stress
vs separation. We choose the zero of energy at
infinite separation, E(w—o0)=0. In the case of
zero surface tension, there is a weak “‘secondary”
minimum at ~26 A separation where forces bal-
ance (Figs. 2 and 5).

The material properties, B(w), K (w)=k./w, and
II(w), from bilayers in solution, are used to esti-

20 T |

10 20 30 40
w (A)

Fig. 4. The disorder parameter V& (w)B(w) at different bilayer
separations. This quantity, also known as the Caillé parameter
([14]). Large values correspond to stiff multilayers that give
sharp X-ray scattering peaks. Small values, near positions of
force balance, suggest disorder in the multilayer lattice.

0.04 I T
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0 \_’/__/
=-0.0 l L
20 25 30 35
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Fig. 5. The energy of interaction E(w) per area between adjacent
bilayers. The “zero” of this energy is in the limit of large separa-
tion. This is an energy per pair of bilayers. The total energy of
the multilayer is NE(w). Later, addition of surface energy will
be shown as upward shifts in each part of this curve.

mate the excess surface area due to undulation
under the stress of different surface energies y. By
Eq. (cc), the excess area per unit projected area of
multilayer, is (Section 2, Eq. (6)),

AL )= AT )= - — B
llosm V)= A llggm(W),Y) = ——
7 8 VK. B+7
With progressive loosening of the lattice, at
small pressures 77 ,(w), there are greater undul-
ations in the surface. These undulations are quelled
by the cost y of creating an interface. This quelling
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is apparent in the downward shift from the “y=
0” line to the lines for 1, 10 and 100 ergcm >
in Fig. 6.

Because of undulations, a finite y increases the
energy needed to create a multilayer of given
spacing w. Think of taking the value of energy
E(d) at y=0 and adding energy in increments
A[d;y)dy while maintaining constant w and
VK. (w)B(w). The additional energy is
{6 Ac(d,y) dy per unit area due to surface undula-
tion. (We omit the energy v of the flat surface
since it is constant in w; we need look only at
factors that change the energy of swelling as a
function of separation.) The total energy per layer
is a sum,

B () = E(w) +kTq§m j T dy
otal(W)=E(W)+ ——— —
ol 87N Jo VK.B+7

kTqtax < Y )
—In| 14+ — 10)
8N VK.B (

The number of layers, N, is in the denominator of
the surface-energy term because £E(w) and

=E(w)+

0.4 I T
0.3[- ﬁ

Adw,y) =0
0.21— -
0.1~ =

10
o 1 _ ,100
15 20 25
W(A)

Fig. 6. The rippled, contour area A (I u(w),?) at different
water-tayer spacings and applied tensions, y=1, 10 and
100 dyn cm~!. As plotted, this area is dimensionless since it is
the excess area divided by the flat, projected area occupied by
the multilayer on the substrate. It can also be thought of as an
excess area of undulation per unit area of substrate. Application
of surface tension dramatically suppresses undulatory area,
especially at the larger spacings where multilayers are highly
compressible.

E.,.i(w) are expressed as energies per layer in a
stack of N layers.

The effect of this additional energy is to create
an energy minimum at a different position from
that without surface energies. There is, physically,
an attractive force created by the surface tension.
Swollen multilayers cost more surface energy. The
action of surface tension then is to pull the layers
together. This shift in the energy vs distance curve
is shown in Fig.7 for =0, 1, 10 and
100 erg cm ™2,

Computed at constant applied osmotic stress,
I onic» Tather than under the constant-spacing
condition used to compute E,,.(w), the repeat
spacing varies with change in surface tension y
(Section 2, Eq. (8)):

w kT Grrax VKB
17,

oy Mo T T RN (VKB4 oMl

By evaluating this derivative at different spacings
w and values of 7, one sees the pulling-in power
of surface tension . The surface-energy cost of
undulation is offset by stiffening the multilayer by
compaction. There is a large response to ;* when
both VK.B and y are small, that is when the
multilayer is swollen and flexible. Fig. 8. Stiffening
the stack either by moving to small w or by
bringing it to high y takes away the floppiness that
confers sensitivity to changes in tension.

The process of pulling in can be seen in Fig. 9
which plots the repeat spacing w as a function of

0.1
0.08
0.06
Etolal(wiy)
0.04
(erg/cmz)

0.02

w (A)

Fig. 7. Upward shift from E(w)= E(w,;y=0) with application of
surface tension. The extent of this shift is greater at the larger
spacings where there is more motion in the loosely packed
layers. The result is a shift in the effective energy minimum.
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Fig. 8. Sensitivity of water spacing w to applied tension y at
constant osmotic stress. Multilayers are stiff at small spacings,
refractory to surface perturbation. Near the ~26 A force-bal-
ance point, multilayers experience significant undulation and
are thus susceptible to rising costs of creating contour area. The
response to applied y is to stiffen, to pay the osmotic price of
compressing the layers rather than the price of larger surface
energy. At high surface tension, 10 erg cm ™2 for example, the
multilayer is already stiff (having already been brought to that
spacing by tension-induced compression) and there is little sen-
sitivity to further increase in .

surface tension vy. In the present case, w decreases
monotonically. There is maximum sensitivity to
applied surface tenston at low v and at the wider
spacings that go with low stress and high compress-
ibility (Fig. 10).

It is now instructive to elaborate the initial plot
of log,o(IT smoic) VS Zero-tension repeat spacing,
w=w(y=90), Fig.2, to show the shift to
log,o({1,or1) Vs repeat spacing w=w(y>0) that
occurs at each osmotic pressure. Here 77, is the
derivative of the energy per layer E, ., (w) and
coincides with apphed 17, at y=0.

On a linear P vs w plot, Fig. 11, it is possible to
see the crossover between attractive and repulsive
interlamellar force as it occurs at different surface
tensions y. The inset shows the shift in the position
of maximum swelling, the minima of the energy
E,oa{wiy) vs separation d at each level of tension 7.

3.2. Phosphatidylserine ( PS) multilayers on a solid
substrate, tension-induced contraction and phase
transition

Using osmotic stress force measurements ([5])
on phosphatidylserines (PS), we model the hydra-

27 T
26 -1
w ¥ Mosm)
25 =
(A) \\_\;
2 \’Q‘xx
V\%
23 .
0 Y 5 (dynes/cmz) 1o

T T

40 60 80 100

¥ (erg/ent)

Fig. 9. Progressive pulling in of water spacing w as a continuous
function of applied surface tension. The intercept with the verti-
cal axis gives the spacing in the absence of surface tension,
where bilayers have been brought to their respective separations
only by osmotic stress. The computation is an iteration of the
derivative (Ow)/(d})|,,, at each spacing w and corresponding
osmotic stress /7,,,,(w). Change in w is most rapid at the smallest
v and goes to zero when tension reaches very high values.

tion force as equivalent to that between bilayers
of phosphatidylethanolamine (PE), P,=10"%erg
cm™? with a decay constant i,=1.1A. To this
hydration force we add a van der Waals attraction
for a finite slab of thickness ¢ with a Hamaker
coefficient of 8 x 10~ ' erg. These parameters gave
an energy minimum of ~0.1 erg cm 2, similar to
that measured by Evans and Needham ([21]) for
PE. (We could have used a model with extra
zwitterionic attraction ([22]) or one with hydration
attraction ([23]), but the details of the different
models will not concern us in the present illustra-
tion. We will keep with the simplest form for
attractive forces.)

In addition to these PE interactions, in order to
simulate electrically charged phosphatidylserine,
we add an electrostatic double layer interaction
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log10(Jeotal)

(dyne/cm?)

23 24 25 26 27
w (A)

Fig. 10. Osmotic stress vs water spacing after the compressive
effect of surface tension. The original data, Fig. 2, is shown as
the y=0 line. The y =1, 10, 100 dyn /cm ™' curves are the result
of the contraction portrayed in Fig. 9. The inward shift in the
energy minimum, Fig. 7, now appears as a change in the posi-
tion of effective force balance under the dual action of surface
tension and forces within the multilayer.

. 6
3'10 0 —F -
2410° 0\ X\K\-
Moa(W :'Y) 10
6
-~ Y T Y
0 |
—1'106 l
20 25 30
w(A)

Fig. 11. Linear plot of apparent, “total”” osmotic stress vs spac-
ing, designed to show attractive forces that emerge with the
application of surface tension. Inset: close-up to show shifts in
force balance position. The appearance of attractive forces cor-
respond to the creation of positive slopes in the energy vs spac-
ing plots of Fig. 7.

P.e ™ with coefficient P,=5x10%ergcm™3

and a Debye decay length i, =10 A. The magni-
tude of this repulsion qualitatively follows that

seen in force measurement. Other forms of electro-
static repulsion will be treated in a later study.
As with PC, in the computations presented
below the minimum wavelength of undulation is
taken to be of the order of the phospholipid bilayer
thickness, 30 A, to give a maximum wave vector
Guvax=(27/30) A~'. The bilayer bending elasticity
coefficient is again k,=25kT=10"2erg.

3.3. Pressure vs separation, no surface tension

The osmotic pressure /7 mq1ic VS Spacing d seen
for surface-tension-free material shows the two
dominant exponential regions -— hydration and
electrostatic double layer repulsion — that end with
a drop-off around 65 A separation with the onset
of the power-law attractive van der Waals force
(solid line, Fig. 12). Because attractive forces will
show an unexpectedly strong influence on the
swelling of multilayers in the presence of surface
tension 7y, a plot of the interaction free of van der
Waals attraction is also given in Fig. 12 (dotted
line). Differences here on a I 0i{d) plot look
small except near the ~65 A force-balance point.

Still, in the region between 19 and 23 A separa-
tion, there is a flattening in the slope that reflects
the attractive force which created an energy mini-
mum in the absence of electrostatic repulsion. The
long-dashed line in Fig. 13 shows this minimum-
energy position near 15 A separation for electri-

logO(Hosm )
(erg/cm3 )

o

10 20 30 40 50 60

w (A)

Fig. 12. Applied osmotic stress vs separation for charged
bilayers in water (solid line). Dotted line, attractive force
removed. The attractive force creates a force-balance position
near 65 A. There is also a slight flattening of the stress with
attractive forces in the separation between 15 and 30 A.
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Fig. 13. Detail of osmotic stress vs separation to compare beha-
vior with attractive force removed (dotted line) or electrostatic
double layer force removed (dashed line). The absence of
charged-bilayer repulsion creates a force balance at ~15 A.

cally neutral bilayers, the separation where attrac-
tive van der Waals forces balance hydration
repulsion.

3.4. Energy vs separation, no surface tension

The energy of interaction vs separation shows a
very weak energy minimum where attraction bal-
ances repulsion near 65 A separation, but no mini-
mum in the region of 19 to 23 A. This energy is
taken here with respect to zero energy at infinite
separation, the integral of IT(w) measured in the
absence of surface energy. It is the energy of
interaction per pair of layers. The total energy of
a stack of N layers is NE(w) (Fig. 14).

0.02

E(w)
(erg/em?) 0.01

(erg/cm?) 0.05—~

0.00 SliTrcocama

| 1 | | |

(a) w (A)

|
30 40 50 60 70 80 90 100

3.5. Compressibility modulus B(w) and fluctuation

parameter VK (w)B(w)

The flattened region at 19<w<30A in
I oiic(W) shows up as a wildly non-monotonic
region in the compressibility modulus, B(w)=w
dI7/dw. The extrema in this compressibility modu-
lus (solid lines, Fig. 15) occur at 20.3 A for the
minimum and 28.9 A at the maximum. The impor-
tance of the underlying attractive force in creating
this non-monotonic behavior is clear from the
dotted lines in Fig. 15 which are the compressibility
modulus without the attractive force.

The non-monotonic behavior of B(w), so clearly
seen in Fig. 15, indicates a progressive hardening
of the multilayer as it is compressed from the
largest spacings but sudden softening below 30 A
to a minimum value near 20 A. Further compres-
sion stiffens the multilayer again. All this occurs
at the same time that there is only monotonically
varying repulsion in the actual osmotic swelling
pressure vs separation, Fig. 12. The attractive force
“shows through” in the compressibility. Removal
of attraction, dotted lines in Figs. 12 and 15,
creates a monotonically stiffening compressibility
modulus.

There is, from the same presence of significant
underlying attractive forces in the 19-30 A range,
a waxing and waning of the fluctuation param-
eter VK. (w)B(w) (Fig.16). The minimum in
VK. (w)B(w) near w=20 A suggests that there is a
softening of the multilayer there comparable to

010 T T

E(w)

15 20 25 30 35
(b) w(A)

Fig. 14. Energy vs separation with respect to a zero at infinite separation. Solid line, hydration and electrostatic repulsion plus van der
Waals attraction; dotted line, repulsion only. (a) Long range, energy minimum only at 65 A. (b) Short range, pure repulsion. These

curves are interesting in part for their lack of feature.
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Fig. 15. The compressibility modulus shows strikingly non-monotonic behavior including a region of apparent multilayer stiffening
with increasing separation from 20.3 to 28.9 A. These features do not occur when attractive forces are absent (dotted lines). The
derivative w(071,,,/0w) creates a very different curve from its antecedent, Fig. 3 for PC multilayers.

that which occurs at separations greater than 40 A
where interaction forces are very weak. (The
extrema here are at 20.3 A for the minimum (as
with B) and at 27.04 A for the maximum.)

3.6. Excess undulatory area A(w,y), suppression by
surface tension y

There will be a comparable increase in undula-
tory fluctuations in this locally softened region, in
fact an increase-then-decrease of undulatory excess
area A(w,y) vs w. The maximum occurs at 20.3 A
and the minimum at 27 A. Since the fluctuation

JK (B

(erg/cmz)

| s
20 40 60
w (A)

Fig. 16. Non-monotonic variation of disorder parameter vs
water layer thickness. This variation suggests the existence of
undulatory disorder in the multilayer in the region just above
w=20A.

parameter is ~1ergem ™2 in the region of non-

monotonic variation (Fig. 16), the excess area

kT Giax

A =— —F—==
8n VK. B+y

(Section 2, Eq. (6)) plotted in Fig. 17, is suppressed
by the presence of relatively small surface energies
y~1ergem 2. At small spacings, <15 A, there is
only the expected monotonic increase in undul-
ations with increasing spacing w.

To see the extent to which the wide variation in
excess undulatory area A (w,y) reflects underlying
attractive forces, we plot A(w,y) vs water spacing
for the case where the attractive van der Waals
force has been removed (Fig. 17(b)) The wide
excursion in area is gone and replaced by a ripple
from the switchover between hydration and elec-
trostatic double layer forces near w==20 A.

3.7. Change in spacing with surface tension

The instability at 20.3 to 27 A separations is
more evident in the computed sensitivity of bilayer
separation to interfacial tension,

% k T qihx

VKB

& lm.. SIN (VK.B+y)? o, |,
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Fig. 17. Excess area, A.(w,y), due to fluctuations of the multilayer surface. (a) Softening of the multilayer at separations around 20 A
creates a peak in undulatory surface area. Relatively small surface tensions - 1, 2, 3dyncm ~! _ suffice to suppress undulations
significantly. There is a range of separations, w=20.3 to 27 A. where the surface area decreases as a function of increasing separation.
In this anomalous region, the effect of a finite tension will be to expand rather than to contract the multilayer. (b) No anomaly seen
without attractive forces.

(Section 2, Eq. (8). The effect is, again, especially for the maximum. There are two points at which
evident at very low tension (Fig. 18). (W07, =0 20?’ aqd _27 A

This down-and-up behavior suggests that there One can see the dlscrlmlngtlon tha.t occurs at
is a range of separations, 20.3 to 27 Angstroms, at these two separations by plotting the bilayer spac-
which (8w)/(67)l; >0 where the application of ing vs applied tension (Fig. 19) while maintaining
surface tension will actually drive multilayers to constant osmotic stress. Even at very low y spacing
greater separations. There is a minimum in w moves away from 20.3 A. The spacing of 27 A

ow/oy |, at 19.7 A and a maximum at 20.9 A is a kind of gathering point, the application of
100 T 1 T T
ow 60
ay 0, 20

=20

60

—100
1

aw
Fig. 18. Sensitivity of repeat spacing to applied tension. Each curve is for taking the derivative — at the designated value of
7Y Wgem
tension y. It is especially important that there exists a region where this derivative is positive, where added tension is expected to
increase the water spacing w. For separations initially just greater than 20.3 A at y=0 the spacing will continue to grow until the
derivative reaches zero (near 27 A) Separations initially below 20.3 Aor greater than 27 A will decrease with change in surface tension.
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Fig. 19. Evolution of water spacings w as function of tension y
under application of constant osmotic stress. Points on vertical
axis are those achieved under stress 77,,,(w). see in solution,
Fig. 12. The points to the right are those reached under applied
+. The separation from point 20.3 is almost immediate. The full
consequence of finite y is reached by ~1dyn cm ™' Instability
in spacings at zero tension is seen in the convergence of lines
toward w=27 A as well as away from w=20.3 A.

tension again causes multilayers to move toward
this separation.

3.8. Pressure vs spacing, under surface tension

The nature of this instability around 20.3 and
27 A becomes clear when we plot applied osmotic
pressure vs spacing for multilayers under different
applied surface tensions. Fig. 20 shows this for y=
1, 2 and 3 erg cm 2, together with the original 17
vs w (from Figs. 12 and 13) at zero surface energy.
With the application of small but finite tension,
~1 dyn cm 2, the log,, (7T) vs w curves cluster to
nearly one curve with a jump in the region 16 to

ST T T T T T T T T T T 111
logo(p)
5.5 ]
| I I I T I O R I |
16 18 20 22 24 26 28 30
w (A)
A
6l
5
loglo(n)
4
(dyne/cm)
3
) N I S N I | Y O |
20 30 49 50 60
A
w(A) B

Fig. 20. Osmotic stress vs separation at =0, I, 2 and
3dyncm ™! The clusterings and instabilities seen in Figs. 18
and 19 emerge here as horizontal tie-lines, effectively first-order
transitions induced by added lateral stress on the surface. The
horizontal break occurs about the 20.3 A separation where a
separation instability is seen above. The osmotic stress at this
point is that of the initial /7.y, (w=20.3) measured in the
absence of tenston.

25A. This is the same region that showed an
instability in Fig. 9 for 0w/0y and in which, Fig. 19,
tension was seen to drive the multilayer spacing
away from the 20.3 A separation point.

At much larger spacings, Fig. 20(B), applied
tension pulls in the lattice from a force balance
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Fig. 21. Energy E(w,}) in the presence of applied tension. Points on the y =0 curve are shifted up by j A (w,y) dy. This shift, greater
at spacings where multilayers are softer, creates local energy minima at small spacings. 0

point above 60 A to one between 40 and 45 A. It
seems that very small surface tension suffice to
induce contractions both at long and short range.

3.9. Interaction energy vs separation, under applied
surface tension

The energy of interaction per unit area shows
jumps and shifts in maxima and minima upon
application of tension. These energies, plotted in
Fig. 20, are taken with respect to a zero at infinite
separation for the zero-tension multilayer. At each
separation, w, there is an additional energy from
integrating {} A.(w.y) dy as described above. This
additional energy, due to the work of creating an
undulating surface, makes its greatest contribu-
tions when the multilayer is softest. These are the
regions where the undulation parameter
VK. (w)B(w), (Fig. 16), exhibits its smallest values.
Comparison with Fig. 16 shows the expected
minima in VK_,(w)B(w) near w=20 A that turn
into energy maxima here in Fig. 21.

4. Discussion

Why do lipid multilayers swell so differently
when exposed to a vapor compared to their swell-

ing in liquids or in polymer solutions. The often-
mentioned “paradox” is that water at the same
chemical potential seems to be so differently acces-
sible to the same material. Nowhere has this con-
tradiction been seen more annoyingly than in the
limited sorption of water by charged phospholipids
deposited on solid substrates.

Our formulation/computation here suggests that
the combined perturbations of substrate adsorp-
tion and of vapor/multilayer surface tension create
the equivalent of attractive forces between layers.
Bilayers are able to move in greatly swollen prepa-
rations. This movement itself is a force for swelling
([24]). Conversely, perturbations that stiffen the
bilayers stifle swelling.

More interesting results occur when these
“undulations” are coupled with direct long-range
attractive and repulsive forces between layers.
Repulsive forces are enhanced by the motion of
bilayers ([25]); attractive forces are masked ([26]).
The computations here suggest that surface-ten-
sion-suppression of undulation has a double effect:
It weakens that part of observed repulsion that
came from configurational entropy; it can reveal
weak attractive forces that were previously over-
whelmed by undulatory repulsion.

Two kinds of lipid system to illustrate these
points.
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(1) Substrate-deposited neutral “phosphatidyl-
choline” multilayers take up less water in vapor
because surface undulations cost surface energy.
The layers pull themselves tight even in the pres-
ence of small surface energies Figs. 7-11.

(2) Charged “phosphatidylserine” multilayers
also pull together under surface tension. But they
do much more. Even when there is a net repulsion
for swelling in water, surface tension creates
regions of net attractive force at small separation
to prevent swelling in vapor, Fig. 20 These attrac-
tive forces occur in regions of local energy minima,
Fig. 21 We argue below why it is easy for the
multilayers to fall into the trap of these local
minima and for charged lipids to fail to take up
water in saturating vapors.

The reasons why surface tension can penetrate
layered structures have been presented in an earlier
paper ([3]). Intuitively, bilayer thermal motions
can be resolved into independent degrees of free-
dom, undulatory modes whose longest wavelength
are comparable to the lateral dimensions of the
sample. Since these undulatory waves incur curva-
ture and compressive energies they are three-
dimensional events whose disturbance compresses
the entire sample. Think of a drum-head. Any
up/down displacement is communicated to the
entire surface no matter its extent. The apparent
wavelength of this distortion is as big as the
diameter of the drum itself. When this drum is a
“smectic” multilayer, the wave also compresses
the stack and penetrates into the multilayer.
Penetration depth is described as a parameter
1/a, for each mode of wave vector g=2m/i
(Appendix A): 4 is the wavelength whose largest
dimension is that of the extent L of the multilayer
domain; a, =VK,/Bg* (Appendix A, Eq.(A10);
1ja,~7> VB/K_ where B is a compressive stiffness
and K is a bending stiffness. For A~ L, penetration
into the multilayer goes as a length L? VB/K..

(3) Preparations with large domains L of coher-
ent lamellar order will be perturbed to great depths
by surface tension; small-domain preparations will
not show strong surface effects.

(4) Multilayers that are hard to compress (big
B) are expected to respond deeply to perturbations
on the surface; but surface undulations are not

transmitted deeply into multilayers that already
do not bend easily (big K,).

Now add surface energy y. The multilayer gauges
y in proportion to its material property VK, B.
Stiff materials, either in compression (large B) or
bending stiffness (large K.), do not feel additional
surface effects. Undulations that would be sup-
pressed by v are already gone because the multi-
layer 1s inflexible. The parameter VK (w)B(w) is
key to designing experiments for examining the
vapor pressure paradox. Preparations with small
VKB are those likely to show big differences when
swollen in vapor rather than swollen in liquid.

To go further, consider the pressure vs separa-
tion and energy vs separation figures, Figs. 20 and
21. A charged bilayer that would move toa ~ 60-A
spacing between bilayers in pure water will take
up only 45-angstroms of water in vapor. Even this
much swelling is not seen in measurements
(Jendrasiak et al., 1996). Rather, bilayers of this
kind will take up only ~20 A of water in near-
saturating or saturating vapors. They seem to sit
at the upper, local energy minimum near 18 A
shown in Fig. 21(b). According to the estimates
of Fig. 20(a), an osmotic stress of 10°> erg cm 2
is needed to push these charged multilayers to this
separation. This stress level is where one sees a
flat region that has the appearance of a first-order
transition.

What fluctuation in temperature is enough to
lower the water vapor activity to deliver this level
of stress? In terms of relative humidity, p/p, the
osmotic pressure is

Hosmotic = _(kT/vw) 111(17/170) X

—1.3x10° In{ p/p,) erg cm 3

where v, =30 x 1072* cm?®, the volume of a water
molecule and k7=4x10"""erg. The equival-
ent of 10°°ergcm™> osmotic stress occurs
at In(p/p,)=—10°3/13x10°=—-24x10"* or
99.98% relative humidity. The Handbook of
Chemistry and Physics tells us that the vapor
pressure of water changes by 2.69 kPa between
3.535 kPa at 300°C and 6.228 kPa at 310°C, an
increase of 76%. The required change 0of.02%
would require a temperature fluctuation of 0.003°.

Sorption of water through vapor by lipids is
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very difficult to control. In osmotic stress measure-
ments, it is usually good practice to work at 86%
relative humidity or less ([27]). The form of the
energy vs spacing profile near w=20A in
Fig. 21(b) suggests how a system may easily be
trapped in a local minimum. In a saturating vapor,
even in a super-saturating vapor, the surface
energy remains a factor in swelling. To climb
the ~0.01 ergcm™? energy barrier shown in
Fig. 21(b), even a 1 square micron patch would
have to absorb 100 layersx (10~ %cm)? x
0.01 ergcm 2~ 1078 erg, much more than ther-
mal energy.

A profitable next step would be to examine the
apparent first-order phase transition induced by
surface tension, e.g. Fig. 20, in terms of a balance
between surface and bulk energies. There is the
equivalent of a Clausius—Clapeyron equation relat-
ing the tension and osmotic pressure at transition
to the change in area and water volume.

d”tmns AAC
= (12)
dy AV,

There 1s a first-order transition turned on by
tension and even a kind of a critical point on a
phase diagram at low tension.

There 1s also an intuitive connection to be
developed between surface energy and internal
osmotic stress similar to that between surface
tension and hydrostatic pressure in the Laplace
relation. There one speaks (for a sphere) of an
energy change with change in surface area
vd(4nr?) balanced against the rate of change
of energy with volume p; d(4nr?/3):y8nrdr=
pidnr*dr which gives the familiar relation p.=
2y/r.

Here, in our undulatory/osmotic case, one
speaks of an energy from a change in area,
ydA(w;y), vs an energy change from a change in
volume, /7.d(Nw), per area of multilayer. (This
T is an extra osmotic pressure due to the surface
tension on top of what is supplied by external
osmotic stress. The analogy with Laplace pressure
is to see that there the pressure p,=2y/r is in
addition to the background atmospheric pressure.)
The two balancing changes in energy can be

parameterized as functions of spacing w:

a"4(: kT qulax
i . . S
ew |, 81 (VK B+7)?

oVK.B

~

ow

X ydw=II N dw (13)

v

so that the consequence of a tension y on surface
pressure is,

g KT G VKB
" 8N (VK.B1y)?  w

(14)

This extra contribution is small for very large y
because at large y there is very little surface undula-
tion, A, itself has gone to zero with the progressive
tightening of the multilayer as it was brought from
zero to high tension. (If the undulation-free multi-
layer surface were itself curved, with a radius r, as
with an “onion-form” liposome rather than the flat
multilayer analyzed here, there would also be an
osmotic Laplace pressure analogous top; =2y/r.)

Recall now the excursions in 4, vs w in Fig. 17
and see immediately how surface energy creates a
11, that adds to or subtracts from the osmotic stress
experimentally applied to the multilayer. This is an
instructive way to view the plots in Fig. 20.

We have not explained the paradox. We have
suggested a strategy by which it might be examined
and have shown how properties of lamellar geome-
try impart sensitivity to system parameters that
have been hard to control. In this vein it is essential
to recognize the large assumptions made in this
first, mean-field model where bilayer spacing is
assumed uniform. For very thick multilayers or
layers under strong surface perturbation, spacing
can be expected to be non-uniform.

We have used as a material property the com-
pressibility B(w) measured on multilayers in which
undulations are already occurring. We are making
believe that the additional, tension-effected work
of compressing and bending the layers in this
already-undulating system can be described in
terms of a Hamiltonian that begins with hypotheti-
cally flat layers.

Following conventions in osmotic stress meas-
urements, we have ascribed all the water-volume
change to changes in water spacing with little
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added contribution from lipid bilayer contour. In
this sense, we are restricted to situations where
ripples are small, 4.« 1.. This is because the mea-
sured 7, mo1ic(w) curves of multilayers in water use
stoichiometric measurements of the volume of
water, w=w(V,,) so that w is in fact the variable
used to calibrate the volume of water. Complete
solution of the “inverse problem”, beginning with
flat layers and direct interactions, would re-define
w; changes in water volume would be written as
functions of bilayer separation and contour area.

In principle, the mean-field perturbation picture
will work only for small perturbations. That restric-
tion can be violated when we use the y=0 limit as
a reference state. Having recognized this limitation,
we would like the results given here to be taken
only as qualitative indications of the direction of
change with application of finite y. Regions of
instability are particularly likely to appear different
when treated more rigorously. We are happy now
simply to have seen this unexpected instability and
are working on the necessary next step.

We are left with this. The flexibility of large
molecules is intrinsic to their organization. Any
long-range effect of surfaces on molecular packing
immediately leads to a troubling question. Do the
laws of molecular organization observed incm-
sized test tubes hold within the confines of micro-
meter sized cells, viruses or colloids? Only by
continuing to examine — by experiment and theory
— the effects of surfaces will we see why dramatic
consequences come from seemingly small differ-
ences in preparation.
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Appendix
Modal expansion of undulations

We examine the action of surface tension y on
an N-layer multilayer of thickness D deposited on
a solid surface, one surface under tension,

b
N

z=jb
/
Y

En face, the sample has the lateral dimension L x L
of a square.

Inside the multilayer, there is an energy density
given by a bulk Hamiltonian Hy, of compressive,
B, and bending K_ terms,

Hyu = 1/2{B(6u/02)* + K.((6°u/dp?)*} (AD)

The energy is given in terms of a local displacement
of the layers perpendicular (z-direction) to the
mean layer plane: u =u(x,y,z) and x* + y* = p. This
energy density Hy,, 1s to be integrated over the
full volume. The modulus B has the units of an
inverse compressibility. We will use the measured
osmotic stress 7, (w) vs water separation w
between bilayers of a multilayer in liquid solution
to give us,

B=B(w)= —w(Cll,(w)/dw) (A2)

with units of energy per volume.
The bulk bending modulus,

K. =k /w (A3)
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where k. is the bending modulus of a single layer
with units of energy so that K, is in energy/length.

To the bulk energy density we add a tension
term wherein the applied lateral tension y at the
surface acts on the rippling contour s(x,y,z) of the
surface. This rippled area is greater than the flat
planar area by an amount (ds*—dp?) at each
position p with,

(ds)? =[1 +(2u/2p)*(dp)*;
ds~[1+(1/2)(du/ép)*|dp (A4)

evaluated at z=0. A change in surface tension dy
changes the free energy by an amount,

Hsurface :(1/2)(614/6/))2 d'}/ (AS)

integrated over the full surface.
We expand u(x,y,z) in fourier series, modes or
waves in the x,y plane penetrating in the z direction:

u(x,p,2)=y u,(z) e (A6)
q

where u,(z) is the fourier transform of u(x,y,z) for
the radial vector ¢ in the x and y direction.

Since the sample has finite boundaries, there is
a lowest non-zero wave vector g..,~7n/L corre-
sponding to a wavelength twice the dimensions of
the sample.

H,, can be expressed as a sum of fourier
components in the form,

Bu (z)* + K.q*u,(2) (A7)

The solution for u,(z) comes from minimizing this
quantity integrated over z using a Euler-Lagrange
condition,

d/dz[(6/du, )] = (6/du,) (A8)
to get the differential equation,
Bu,(z) =K.q*u,(2) (A9)

For each ¢ contribution there is a natural length
from the ratio of VB/K.q* (This is because B is
in energy/length®, K, in energy/length and ¢* in
1/length®.) The displacement function u,(z) will
necessarily be a function of the product,

K

Ecqzzzaq: (A10)

In general,

u (z)=A, exp (—a,z)+ B, exp (a,2) (All)
It is clear that fluctuations corresponding to small
a, will extend further in the z direction perpendicu-
lar to the surface. For each mode ¢, with this form
for u,(z), we write down the modal energy as the
sum of bulk and surface energies.

The bulk Hamiltonian gives the energy inside
the L x L x D multilayer,

D

Kq*L? J d[A4Z exp (—2a,z) + B; exp (2a,2)]
0
1
= EVKchZLZ[A,f(l —exp (—2a,D))

+ B2(exp (2a,D)—1)] (A12)

The surface Hamiltonian gives an energy that is
the excess surface area times 7,

1
quLZ [47 exp (—2a,2)+2A4,B,+ B} exp (2a,2)]y

1
=3 ¢ L*[4,+ B,y (A13)

We use boundary conditions to eliminate B, to
write the modal energy E, as a function only of
the unknown A,z in the Hookean form,

E,=(1/2)KyA; (Al4)

By standard methods, the modal free energy,

G, =(kT/2)In Ky (A15)

The magnitude of 4, is found from the equiparti-
tion theorem requiring that £, =k7/2.

For a multilayer adhering to a solid substrate,
u(z=D)=0,

B,=—A4,exp(—2a,D) (A16)
The undulation profile across thickness z is then,
u,(z)=A, exp (—a,z)— A, exp (—2a,D). exp (a,2)
=A,[exp (—a,z) —exp (—2a,D) exp (a,z2)]
(A17)
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The modal energy £, is,

| R
E, =5 {VK.B[1—exp (—4a,D)]

+[1—exp (—2a, D)y} q* L* A2 (A18)
and
A} =kT/{VK B[l —exp (—4a,D)]

+[1 —exp (~2an)]2y}q2L2] (A19)

From this quadratic form for E,, ignoring y-
independent terms, we have the modal free energy,

kT _
G,= 5 In{VK_ B[l +exp (—-2a,D)]

+[1—exp (—2a,D)]y} (A20)

For large multilayer thickness D, modal energy
E, and free energy G, go to,

1
E,= (VK. B+7}q*L? A2 (A21)
and

kT _

A7 =kT/[iVK.B+y}q*L?] (A23)

Integration over modes q — free energy

The goal is to see what happens to the free
energy G when we change applied osmotic stress
. and surface energy 7,

dG( osmv}) (CG/aHosm)dnosm +(6G/(—;")d/
(A24)
dG(Hosm ’}’) = Vw(Hosmsy) dnosm + Atotal(”osm s}’) d'}
(A25)

Ve (I om,7) and Ay (I,6,)) are, respectively, the
volume of water and the total contour area of the
adsorbed multilayer (as described under Section 2.

The excess area for each ¢ is the derivative

(0G,/&),

(0G, /oY)
KT (1] kT |
1T ) (WK.B[l+e D] 2 (VE.B+7}

+[1—e™ 2Py}

=A

(A26)

3We want to compute the shrinkage of the multi-
layer from the wave-stilling action of surface
energy y. The desired relation, (dV,/dy), can be
obtained from a Maxwell cross relation,

V[0 n =(0A ot/ 0 i),

It is because we will be taking this (CA,u.)/
011,,)|, derivative after the derivative (0G/dy) that
we can afford to ignore the flat-surface energy
yL? as well as y-independent terms in G. In practice
the required derivative is to be taken with respect
to the bulk property VK.B with a subsequent
derivative — numerically, on the measured function
- (CVK_ Bjell).

The area (0G/dy)|, is the integral of areas A4,
kT [1—e2%P]

(A27)

A, =

© 2 {VEB[l+e M +[1—e TPy
over all ¢ vectors as,
kT (™ax dngdg [1—e2%P]

2 (2m)? {VK.B[1+e 24aP] 4[] —e™ 24Py}

dmin

[ K.
Recalling ;qzsaq Eq. (A10), we have an

| K.
integral over x=2 quD =2a,D.

xMax

xmln

[1—e]
(VKB4 +(VKB—pe "}

(6Gfay)=

3 An alternative way to see this result is to go back to E, put
in the Hookean quadratic form E,=(1/2)KyA,>. The modal
average internal energy is E, =kT/2=(1/2)Ky {A,2>. The excess
surface area is the coefficient of 7 in E,, (1/2) [1—exp (-2
A,D) ¢*L? A, into which we introduce {A4,2>=kT/K,.
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kT
=— (I, +1,) (A28)

I —J‘xMax dX
Y (VKB4 + (VK. B—y)e ™}

min

J‘xMax dx XMax ™ Xmin

- {oc—&—ﬂe*x}_ o
o+ e Max

;l (:x-h’ﬁ)

—e *dx

L= —
: f i {(\/ch+}})+(VKcB_})e_x}

-xmln

JxMax _e—xdx 1 | <1+ﬁexMax >
= e 0 | [ S ————
s XHfET T ot o T

We look at the limit where xy,,>»>Xn, and

Xin ~ O~ then
2 / ° D 2
kT B qMax

X,

G|
a—Vnosm_ K, VK.B+y
lén\/;D
VK. B+y
kT ( 2VK,.B >
\/_‘ VK.B+y
VK.B+y
kT ( 2VK, B >
\/7 VK, B+y
KT Gitax
" 87 VK.B+y
ln<1+v/\@>
+ K 2 (A29)
8nDK, 1—(y/VK.B)

The second term is much smaller than the first.

The y-dependent factor in the second term is on
the order of 1 or less. The quantity in the denomi-
nator DK.=Nwk /w=Nk, 1If N=100 and
k,=10""?erg, typical for phospholipid bilayers,
then Nk,=10"1erg

If y is 100ergem™*, huge compared with
VK, B (see Section 3, and gy, ~27/30 A, then

-2

2
qMax
~1013 »

VK.B+y DK,

For this reason, we will continue our discussion
by using only the first term,

~10'°,

oG kT qéax
- (A30)
OV Wosm 87 VK B+y

The dropped terms may be important in systems
different from those considered in this paper.
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