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By definition, membrane or macromolecular assembly is an event of molecular confinement against the
configurational entropy of a disordered state. Bilayer membranes under progressive confinement experience
a continual damping of undulatory fluctuations, first interpreted as a steric force (Helfrich. Z. Natur-
forsch.1978). This paper uses a new, diffusion-equation formalism based on the Feynman-type variational
principle to describe how direct interbilayer forces—of hydration, electrostatic double layers, and van der
Waals attraction—confine membrane fluctuations. We recover theoretical results to examine measured
forces in multilamellar arrays showing that “soft” collisions, through long-range forces, create a mutual
enhancement of both the direct forces and the undulatory steric interactions. Thus, there is yet another
way to resolve the old, but false, dilemma to choose between steric and direct forces driving membrane
assembly. One may develop a systematic connection between bilayer charge, hydration, and flexibility
and the action of configurational entropic forces. The results make clear that one should measure forces
between membranes or macromolecules in a way that allows them to express their native mechanical

freedom.

Introduction

Traditionally, interactions between macroscopic sur-
faces immersed in aqueous solution were usually thought
of as a competition between electrostatic double-layer
repulsion and the electrodynamic or van der Waals-Lif-
shitz attraction.! This statement forms the basis of the
widely used DL VO theory of colloid stability. Forstrongly
hydrated surfaces an additional repulsive force is now
frequently added to the force balance equation. It is
thought to stem from the overlap of the ordered water
regions on the interacting surfaces upon their mutual
approach and is usually dubbed the hydration force.2

If we think of a stack of deformable fluid membranes
(as in, e.g., a multilayer phospholipid system) where each
of them interacts with its nearest neighbors through the
forces enumerated above, these forces clearly act to
suppress thermally driven out-of-plane fluctuations in the
shape of the membranes and to confine them to their mean
positions. It is in this respect and context that we shall
use the term confinement forces in this work as a synonym
for DLVO and hydration forces operating in a multila-
mellar assembly of fluid membranes.

It was Helfrich? who first proposed that the above forces
still miss an important facet of the macromolecular
interactions. Concentrating on the interactionsin the mul-
tilamellar bilayer system, he showed that thermally driven
elastic fluctuations of the fluid membranes give an
important contribution to the total free energy of inter-
action. The physical mechanism responsible for this
interaction is the coupling between confinement forces
and undulation disorder of the membrane surfaces. In
his original formulation Helfrich considered the interplay
between the pure steric hindrance and the undulation
disorder in a multilamellar system. He showed that on
close approach the steric hindrance acts to decrease the

T Section on Molecular Forces and Assembly.

! Physical Sciences Laboratory.

(1) Derjaguin, B. V.; Churaev, V. V.; Muller, V. M. Surface Forces;
Consultants Bureau: New York, 1987.

(2) Rand, R. P. Ann. Rev. Biophys. Bioeng. 1981, 10, 277. Rand, R.
P.; Parsegian, V. A. Biomembrane Reviews. Biochim. Biophys. Acta
1989, 988, 351-376.

(3) Helfrich, W. Z. Naturforsch. 1978, 33a, 305.

amplitudes of the thermal-mechanical fluctuations and
thus to change the entropy of the thermodynamic system.
These changes in the entropy are further manifested as
the emergence of an additional repulsive force with a long-
range power law dependence on the intermembrane
separation.

The influence of the enlarged set of confinement forces
(i.e., DLVO plus hydration repulsion) on the undulation
disorder was investigated first by Sornette and Ostrowski
and later by Evans and Parsegian. They showed that
thermally driven undulation disorder not only enhances
the underlying confinement forces but also displaces the
minimum energy position to greater values of intermem-
brane spacings. The modifications in the DLVO forces
due to the undulation disorder have been worked out in
detail by the subsequent work of Lipowsky and Leibler.5
They established that under certain conditions the sec-
ondary minimum in the two-membrane system can
altogether disappear leading to unbinding of the membrane
system.

Here we develop a new approach based on the original
ideas of Evans and Parsegian* to analyze the interplay
between the undulation disorder and confinement forces
in multilamellar arrays. We have determined the mean
square deviation of the membrane surface from the planar
configuration by a self-consistent procedure involving the
solutions of a diffusion equation in confined geometry.
We were able to formulate our approach for the case where
confinement forces are composed of hard (steric) and soft
(all the other DLVO-type forces) potentials. We based
our approach on a variant of the Feynman-type variational
principle® for the partition function in an effective Gauss-
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ian model with soft (DLVO-type) and hard (steric)
confinement potentials. We derived the free energy of a
confined elastic surface as a function of the average in-
tersurface separation in a multilamellar stack. We show
that in the presence of purely repulsive soft confinement
potential this free energy function exhibits three distinct
regimes of behavior: At small intersurface separations,
the bare soft confinement forces dominate the overall
thermodynamic behavior of the system. At intermediate
spacings, the free energy depends on the parameters of
the soft potential. If the soft potential is purely repulsive,
the free energy has a term that goes as the square root of
the mean potential. At verylargespacings,the dependence
of the free energy on the average intersurface separation
reverts to the steric form with a modified value of the
interlamellar spacing that depends on the parameters of
the soft confinement potential.

Furthermore, we show that the inclusion of attractive
potential can severely affect the asymptotic behavior of
the interaction free energy at large intersurface separations
due to the competition between attractive and repulsive
(entropic) terms that have the same functional dependence
on the intersurface separation. In our analysis we will be
dealing with a constrained system where the mean inter-
surface separation is set by the application of an external
osmotic pressure. This constraint was chosen in view of
the osmotic stress method used for the direct measurement
of forces between membranes or macromolecules.?

Analysis

We start our discussion by considering the energy of a stack
composed of N fluid membranes, where each membrane can
interact with its nearest neighbors. The total energy of such a
system can be written as a sum

N N
W= ZE" + Zvn.n«ﬂ (1)

n=]

of intrinsic energies due to elastic deformation

E, =YK, [ (V2,0 d% @

and the interaction terms V, ,+, acting between nearest neighbors;
K. is the elastic modulus while the local curvature of the
membrane surface was taken in its lowest order form V:zn(p),
with p = (x,y) being a two-dimensional radius vector and V2 a
two-dimensional Laplacian.

Inordertoreduce eq 1 to a tractable form, we use an equivalent
of the Einstein model of the harmonic crystal of the form

Vont1 = 0z, (0) =y (Va + 2,(0) + V@~ 2,(0)) (3)

that leads to the following form for the total energy of a single
fluid membrane in the stack:

W =1/K, [ (922,60 &% + w(z, (o) @

The total energy of the stack is just N times the above expression.
The additivity is purely a consequence of the Einstein ansatz.
This ansatz is equivalent to the interaction energy of a single
elastic membrane bounded by two rigid surfaces separated by 2a
and interacting with them through potential w(z(p)); see Figure
1. The partition function of a single membrane can now be written
as

f=(exp-6W)) = [ exp(-6W) de(o) .. de(o,)  n— -

where the index n now enumerates different points on a single
membrane surface and 8 = (kT)! is the inverse thermal energy.
In spite of the Einstein ansatz, the partition function is still
difficult to evaluate since in general w(z) is not a quadratic
function of z.
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Figure 1. Schematic transition from the two-membrane po-
tential to the Einstein model eq 3. The interaction potential is
symmetrized with respect to the first two neighbors. The average
separation between the membranes in the stack is a.

It is important to recognize that, correctly speaking, one may
not ignore the fact that the direct potential of interaction between
layers is not actually zero with a quadratic expansion about the
mean position. Particularly in situations where systems spon-
taneously arrange under the action of dominant attractive forces,
there will not be a quadratic minimum, and neglect of this fact
will make a difference in estimates of the depth of the energy
minimum organizing the layers.

We next proceed with a slight digression. In the particular
cage of an elastic membrane constrained between two boundary
surfaces separated by 2a, Figure 1, by an effective quadratic
potential W,

Weeo)) = 3K, [ (922,00 d% + /,B(@) [ 220} d% + wy(a)
®

where w; is a constant added to recognize the difference, noted
in the paragraph above, between the mean potential and the
effective “zero” of a quadratic form. The interaction free energy
per unit surface area of a single membrane Fy/S can be deduced
from the partition function f; in the form

Fy/S = ~(kT/S) In f, = (kT/8\/BIK, + w, ™

where fo = (exp(-8Wy)). This result can be arrived at in a
standard way by introducing the Fourier components of the local
displacement, z2(Q), and writing z(p) = Lquo (2(Q)€? + cc). The
2(Q) integrations are now in a form of multidimensional Gauss-
ian integrals and can be easily evaluated.

Then using the inequality suggested by Feynman,® we can
establish an upper bound to the free energy defined for the case
of total energy (eq 4) and are led to

FIS < -RT/S)Infy + (W~ Wo)y, ®)

where f; is again the partition function associated with the mean
field quadratic potential W,. The averaging in the above equation
has to be done over W;. We now proceed with the following
observation, viz., that the averaging of a term e**®) can be reduced
to

( eilu(p))wo = o (/D! )

since W, has a Gaussian form, where in deriving the above identity
we have used the same Fourier decomposition as before.
Furthermore, in the above equation we have introduced ¢ as the
average mean square value of z(p); thus ~ -- ~
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e s 2 1 kT 1
o' = (2% (p))y, =~ =\3) (10)
A& KQ'+B \8/, /pi

This permits us to write B(a) as a function of o(a) in the form

B(a) = (kT/8)%(1/K %) (11

We can now proceed to the evaluation of the free energy. The
Feynman inequality suggests that we could use a variational
principle to approximate the free energy with the expression eq
7 if we could establish a minimum for the quantity (W~ W) Wo-
This average can again be handled by the Fourier decomposition
starting from the following expression:

(W= Woy, = (w@)y, -~ '/,B@N2®)y ~wia) (12

Using now the Fourier representation for the interaction potential
in the form

w@ = 7 dk/2mwie™
we obtain
W@y, = [ dk/2mwk )y, =
[ @k 2mwte 11 (1)

if we use the result derived in eq 9. Thus, we are led to the
following compact expression for (W — W) w, in the form

(W= Woy, = wala) - '/,B(a)s” - wy(a) (14)

where we introduced

Wa(a) = f_:m(dl/ V2xaP)w(z)e /P = f_:adz w(z) p,(2)
(15)

Obviously p,(z) is a transverse displacement distribution function
of the fluctuating membrane and is clearly a solution of

2(3p,(2)/0%) = 3*p (2)/32" (16)

Equation 16 is thus in a form of a diffusion equation with a unit
diffusion constant where ¢2 plays the role of time. In the limit
of a very stiff membrane (K. — «) or of low temperatures, the
transverse distribution function is essentially a Dirac distribution
centered at z = 0.

Returning to the Feynman inequality, we can now consider
both ¢? and B as functions of @ and calculate at each a the
minimum of (W- Wy)w,. Thisisexactly the procedure embraced
by Feynman and Kleinert!? in their treatment of the quantum
mechanical partition function. The minimization conditions can
be expressed simply as

1/,B(a) = (3/30Pw 4(a) an
we(@) = w_,(a) - '/,B(a)c* (18)

and thus lead to the following simplified form of the free energy:

F/S =/,B(a)d* + w,(a) 19

This completes the formal development connected with the
application of the Feynman-Kleinert variational principle. We
should add here that the variational result for the free energy is
in fact exact to the first order in w(z).22 Furthermore the
interaction potential should be a smooth enough function of z
that its Fourier transform, which enters eq 13, exists. We note
at this point that the variationally obtained free energy has two
terms: The first one corresponds to the elastic energy of
undulation modes and the second one to the renormalized
interaction potential due to the elastic fluctuations on all scales
up to o. In this respect w,2(a) is closely related to the renor-
malized interaction potential used in the linearized renormal-
ization group (LRG) treatment of the elastic membrane inter-

(12) Feynman, R.; Kleinert, H. Phys. Rev. 1986, A34, 5080.
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actions'*where it is also a consequence of integrating out different
undulatory modes from the original Hamiltonian of the system.

This is as far as we can proceed by purely formal means. The
first problem that we have to clarify at this point is connected
with the fact that the interaction potential w(z) has a hard core
due to the impenetrability of the boundaries at z = +a. This
part of the interaction potential (the steric interaction) does not
have a Fourier transform, and we have to deal with it on separate
grounds. The same problem occurs also in the LRG treatment
where it is resolved through the use of the full nonlinear recursion
relation satisfied by the renormalized interaction potential.ls

Clearly in the case that the interaction potential has a steric
component, the distribution function p,(z) that enters the
definition of the renormalized potential cannot be given by a
simple Gaussian asin eq 15. Theimpenetrability of the bounding
surfaces at z = +a demands that the probability of a mode for
crossing this boundary equals zero. Thus, we take a modified
distribution function that enters the definition of the renormal-
ized potential eq 15 in the form

Z;e_“/ ORI/ 221D? 005 (20 + 1)(x/2)(2/a)
<

p,(2) = (20)
9 _L &~ /D@A+)2x/ Do ar?
w=p (2n + 1)(=/2a)

It is still a solution of the “diffusion equation™ eq 16, but it also
has the property of going to zero at the hard boundaries. The
introduction of this modified form of the distribution function
is not really a formal derivation but more likely a heuristic
statement that is plausible on completely physical grounds (e.g.,
by comparison with the related confined polymer or the confined
diffusion® problem). Since the steric potentialiszeroin the region
between the bounding surfaces, the free energy in this case reduces
to

F/S="/,B(a)d* @1)

The minimization relations eqs 17 and 18 derived for the soft
part of the potential do not help in this case to determine o.
However, it is clear that if the heuristic treatment of the hard-
core part of the interaction potential should remain self-
consistent, one should demand that

f_:azzp,(z) dz =o® (22)

This is the self-consistent condition supplementing eqs 17 and
18in the case of the stericpotential. In extenso the above equation
can be written as

® —1\*
2 _— e 1/DC+ /Do /a2
. @2n + 1)%(x/2)°

e -Dn

e—(l/2)(2n+l)’(r/2)‘(¢/n)’

=3 (2n + 1)(x/2)

n ( w (23)
It comes as no surprise that this self-consistency relation can
now be solved with the Helfrich ansatz? o2 = y,a2, with the numeric
value p, ~ 0.183, giving for the free energy of the fluctuating
membrane in the confined region

FyS ="/,(kT/8) (/K p,a% (24)

The repulsive pressure corresponding to this confinement free
energy is obtained in the form

=35 kT2 1
P=-35=(% R (25)
At a specified value of a this expression is within 10% of the
estimate given by Helfrich® who takes u, = /6. It is also not very
far off from the more accurate value for u, derived by Janke and

(13) Fisher, D. S.; Huse, D. A. Phys. Rev. 1985, B32, 247.
(14) Janke, W.; Kleinert, H. Phys. Lett. 1986, A117, 353.
(15) Sornette, D. J. Phys. 1987, C20, 4695;
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Kleinert.!* The path to the interaction pressure stemming from
the hard, stericinteractions alone and leading through the solution
of the diffusion equation eq 16 in confined geometry is thus
essentially equivalent to other (also basically heuristic) treatments
of the same problem. It will however provide us with a simple
treatment of other potentials if we connect it with the variational
principle derived before.

Results and Certain Limiting Forms

In the previous section we have derived separately the
interaction free energies for the case of a fluctuating elastic
membrane in soft and hard (steric) confinement potentials.
Since the DLVO confinement. potential is composed of
both terms, we now proceed to give a unified treatment
for a general confinement potential. First of all, we note
that in the absence of the soft part in the confinement
potential the minimization condition should reduce to B(a)
= By(a). Thus, we can assume an additive form of the
minimization condition eq 17 for the combined confine-
ment potential in the form

B(a) = B,(a) + 2(3/3c>w,,(a) (26)

In order to extract o%(a) from this relation, we use the
connection between B(a) and ¢%(a), eq 11, while for B,(a)
the same relation holds but with o2 = ua2. Thefreeenergy,
however, retains the form

F/S ='/,B(a)e* + w,(a) @7

First of all, we investigate the following form of the soft
part of the confinement potential:

w(z) = (A/xe™ (28)

This choice is in accord with the form of the electrostatic
interaction in standard DLVO theory! or equivalently with
the form of repulsion given by the phenomenological theory
of the hydration force.”® The renormalized form of the
soft part of the confinement potential of the above form
can now be derived as

waa) = [ dz () p,(2) = (A/We™Flxa,(s/a))  (29)

with p,(2) given by eq 20 while the function F(x,y) has
been obtained as

F(xa,(s/a)®) =
= -D"@2n+ 1)(x/2)

ch(xa) exp(=(2n + 1)%(x/2)%(c/a)?)

2=t (ka)? + 2n + 1)X(x/2)?

© R

————————exp(~(2n + D(x/2)%(c/a)?)
m=0(2n + 1)(n/2a)
(30)

In view of later developments we introduce here a function
f() = (8%/0x®)F(x,y).=0 and its derivative f'(y) that enter
the minimization condition eq 26 in the limit of small «a.
Also this condition can be considerably simplified if one
again resorts to the Helfrich ansatz o2 = uaZ

The general solution of eq 26 leads to some interesting
limiting cases. First of all, let us limit ourselves to the
case of small a, or more specifically xa << x/2. In this case
the effects of the elastic fluctuations are small and we are
led to the following limiting form

1390F(xa,(a/a)2) ~ 1+ Y,(xa)*f(c%/a®) (31)

This approximation leads furthermore to the following
form of the minimization condition that can be derived
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from eq 26 by the application of the Helfrich ansatz:

1/p? = 1/p,2 + x4 (ka)'e™f (u) (32)
Its solution leads to the free energy of the form

FIS =~ Y,k T/8 (/K )V nla* + x e ™f () +
(A/0)e™ (1 + Y/, (ka) (1)) (33)

where u is the solution of the minimization condition eq
32. Inthestrict limit of a— 0, the free energy now assumes
a somewhat more simplified form:

FIS =/, (T/8)*(1/K p1,8%) + (A/x)e™  (34)

In this limit steric interactions make an appreciable
contribution to the free energy only if (xa)? << 1/x au,, where
we introduce a dimensionless constant x4 = AK.(8/kT)%/
«3 that measures the relative strength of the soft (expo-
nential) versus the hard wall confinement potential.
Inserting experimental values for A, K, and «, one obtains
Xxa in the range of 10-103. For the hydration force
parameters and lecithin bending elastic modulus, we thus
obtain an appreciable contribution of the steric part of
the free energy to the total interaction free energy only if
a «< 0.3 A, a value of the interlamellar separation that is
experimentally meaningless.

Forsmall but finite xa the free energy assumes a different
form. Inthis case the potential w(z) becomes steep enough
to have a well-defined minimum and the thermal wan-
derings of z(p) are confined only to the region of this
minimum. Thus, we obtain from eq 33

FIS ~ (A/)(Ee™ + 1,V (K x )e ™D (35)

This form of the free energy has already been obtained by
Evans and Parsegiant in their more simplified analysis of
the same problem. The elastic fluctuations, in this limit,
therefore become important only for those interlamellar
separations where «a > In K x4. Fluctuation-enhanced
interaction therefore comes into play when, in general,
interlamellar spacing becomes larger than several decay
lengths of the soft potential and has a general form going
as the square root of the bare interaction potential.

We now examine the limit of large spacings, xa — =,
The soft confinement potential is almost zero everywhere
in the interval [—a, +a] except for the exponential tails of
length ~ ! at the edges of the interval. We therefore
expect that the free energy should again retain a form
similar to the pure steric confinement case, eq 24. This
can be seen as follows. We have

F((xa — »),(0/@)?) = (€/2(xa))F(n) (36)

where F(u) does not depend on xa any more as can be
checked by a direct evaluation of the limit. The solution
of the extremum condition eq 26 can again be obtained
with the Helfrich ansatz o2 = u.a?, where . = p(xa — ©)
and p. # u,. Furthermore we observe that u. is no more
a function of a; however, it still depends on x4 since it
satisfies the minimization condition in the form

Vp2=Yp2+ x F ) (37

The free energy can in this case be obtained as

F_L1kT\? 1
S8 kuat 2 P

K qa®
e (38)

1AFG.) 14T 1
'2(8

The free energy thus has a form identical to eq 24, except
that the intersurface separation a is now changed to an
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effective separation, aer = Vi e/pa. This result can be
interpreted in the sense that in the limit of large a the soft
potential acts to diminish (since wsr < ) the effective
separation between the interacting surfaces, while the form
of the a dependence remains the same as in the pure steric
case.

Matters get complicated, however, as soon as we include
attractive contributionsin the confinement potential V(z).
Following the DLVO arguments,! we could write down
the following plausible form of the intermembrane con-
finement potential at not too large separations

V(z) = (A/x)e™ — H/12x2? 39)

provided that as z — O the attractive contribution remains
bounded as can be argued on grounds of detailed calcula-
tions.1® This boundedness can be obtained by different
interpolation formulas that need not concern us here since
the details of the attractive part of the confinement
potential are irrelevant at small intersurface separations
where the total interaction is overwhelmed by the repulsive
(hydration) contribution. We can thusin principle proceed
in the same way as in the case of a purely repulsive
confinement potential.

It is most interesting to investigate the form of the
interaction free energy in the limit of large spacings. In
this case the renormalized interaction potential can be
obtained in the form

wa(a — =) = (A/x)e™F(p) - (H/127a>)G(r)  (40)

where the function F(u) has already been defined above,
eq 36, while G (1) can be obtained in the following form:

Gp) =
Z(—l)"(2n + 1)(x/2)ci(2n + D exp(-(2n + 1)2(x/2) %)
=0

= D"
————exp(-@2n + D¥(x/2)%)
= ©2n + 1)(x/2)
(41)

where ci(x) is the standard integral cosine function. The
minimization condition eq 26 can again be handled by the
Helfrich ansatz ¢2 = pa? and now leads to the following
equation for u:

Vp? = 1ul + x P - 2x1(G'(w)/ F (1))  (42)

where F'(u) and G’(u) stand for the derivatives of the
respective functions and the dimensionless quantity xx =
H«3/127 A measures the relative strength of the repulsive
and attractive contributions of the soft confinement
potential. Inserting the experimental values for H, «, and
A, one obtains xy in the range 1-10"2. The interaction
free energy in this limit can be obtained as

1(@)2 1, ;AF(u)( _ G(#))
2\8) Kua® 2 @a® \ “HFG
(43)

Thus, it follows that the asymptotic form of the free
energy again has the a2 limiting form while its magnitude
and sign depend only on the dimensionless quantities x4
and xyz. We note that this form has been conjectured but
not directly proved by Sornette.!> Whether the solution
of the minimization condition eq 42 leads to attractive or
repulsive interactions depends clearly only on the respec-
tive values of x4 and xy. Thus, the unbinding of the
membrane (i.e., the vanishing of a stable secondary

F
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Figure 2. Dimensionless interlamellar pressure p* = p/ A, where
furthermore p = -(9/3a)(F/S). The free energy is obtained by
solving the minimization condition eq 26 and then using the free
energy expression eq 27. The dashed line corresponds to the
bare interaction potential eq 39 with xx = 0.2. The full lines
correspond to the fluctuation-enhanced cases with x4 = 300, 100,
and 30. One clearly distinguishes the transition from the
fluctuation-enhanced potential that still has (though displaced)
a secondary minimum from the case of the unbinding of the
lamellae.

0

-2 F

|

|

I' \
-10 |- ! \

|

|

1

) I i i IR 1 i 1
0 ? 4 b g 0w 12 % 1B ® 2

{na}

Figure 3. Same as Figure 2 except that here we vary yy while
keeping x4 = 300 constant. Dashed lines correspond to bare
interaction potentials of the form eq 39 while full lines correspond
to fluctuation-enhanced potentials. Again the displacement and
the final vanishing of the secondary minimum are clearly seen
as one goes from xy = 0.7 to xy = 0.01.

minimum) effected by the thermally driven undulations
can be reached by changes in either x4 or xu as is
represented in Figures 2 and 3. In each of the two cases,
there exists a critical value of x4 or xy where a transition
sets in between a state with a well-defined secondary
minimum at a finite separation and a state without a
secondary minimum, where the force is repulsive for all
values of the intersurface separation. The details of this
(unbinding) transition have been elaborated in the work
of Lipowsky and Leibler.5

The variational method of treating the effects of thermal
undulations on the interactions between flexible mem-
branes, which is related to the linearized renormalization
group studies,!? has the advantage of giving the complete
effective interaction potential (not just its scaling form)
for the whole range of experimentally accessible inter-
membrane separations. It should thus prove valuable to
assess intrinsic membrane parameters (e.g., K.) by com-
paring measured force curves (not necessarily close to the
unbinding transition) with the expectations given by the
variational approach developed here. A short formal
summary of the results presented in this work is given in
the Summary. I
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Summary

The main results for the interaction free energy are
1. pure steric repulsion, eq 24

F/S ="/,(kT/8)*1/K p,a® p, = 0.183

2. fluctuation-enhanced strong exponential repulsion, eq
35

FIS = (Al0fe™ + W WK xe™")

where u is obtained from the minimization condition in
the form

Podgornik and Parsegian

Vu? = 1/u? + xa(ka)e™f (u)
3. exponential repulsion and van der Waals attraction
(for a — =), eq 43

F 1(kT\> 1 |, 1AFw( G(u))

s =2\ Kua® 2 @a® \" “F)
where 1 can be obtained numerically from the solution of
the minimization condition

1p? = 1 + xuF @)1 - 2x(G @)/ F'()))
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