PHYSICAL REVIEW E

VOLUME 51, NUMBER 4

APRIL 1995

Surface polymer network model and effective membrane curvature elasticity

R. Podgornik*
Laboratory of Structural Biology, Division of Computer Research and Technology,
National Institutes of Health, Bethesda, Maryland 20892
(Received 12 October 1994)

A microscopic model of a surface polymer network—-membrane system is introduced with contact
polymer surface interactions that can be either repulsive or attractive and slip links of functionality
4 randomly distributed over the supporting membrane surface anchoring the polymers to it. For
the supporting surface perturbed from a planar configuration and a small relative number of surface
slip links we investigate an expansion of the free energy in terms of the local curvatures of the
surface and the surface density of slip links, obtained through the application of the Balian-Bloch-
Duplantier multiple surface scattering method. As a result, the dependence of the curvature elastic
modulus, the Gaussian modulus as well as of the spontaneous curvature of the “dressed” membrane,
i.e., polymer network plus membrane matrix, is obtained on the mean polymer bulk end-to-end

separation and the surface density of slip links.

PACS number(s): 82.70.—y, 05.20.—y, 61.25.Hq

I. INTRODUCTION

Polymer networks often provide highly specialized elas-
tic properties to biological systems. The structure of the
red blood cell (RBC) membrane is typical in this respect
[1] in the sense that it unites the lipid matrix and the
(polymer) spectrin network into a single “dressed” mem-
brane, where the polymer network not only interacts with
the underlying lipid surface but is actually anchored to it
via ankyrin molecules. The polymer network consists of
negatively charged spectrin tetramers of ~ 200 nm con-
tour length, with intrinsic persistence length of ~ 10 nm.
The replicating network of spectrin tetramers has a junc-
tion functionality of between 4 and 6. The network junc-
tions do not coincide with attachment points (ankyrin
molecules). The contour length of the spectrin tetramers
is between 2 and 6 times larger than the separation be-
tween anchoring points and the whole system thus looks
like a cross-linked two-dimensional gel attached to the
supporting lipid surface while the polymers are allowed
to stretch into the cytoplasmic (polymer rich) solution
and away from the lipid surface [2].

The problem of elastic properties of a “dressed” mem-
brane, where the individual polymer molecules or their
junctions are confined to lie on (or are embedded in)
the supporting surface, motivated by our present under-
standing of the RBC spectrin network, received a lot of
attention recently [3-5]. The method of choice in most
of these investigations has been the Monte Carlo simu-
lations that led to several important insights regarding
surface-tethered polymers and/or surface polymer net-
works. The analytical limits for these systems have been
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much harder to come by due to the complicated nature of
the polymer network-surface interactions. In this paper
we shall try to fill this gap and establish some approxi-
mate limiting analytical results for the elastic properties
of a surface polymer network pinned to a supporting flexi-
ble membrane surface. More specifically, we shall investi-
gate the modifications in the elastic energy parameters of
a flexible membrane wrought by the presence of a surface
polymer gel where the cross-links (in this case presumed
to be slip links) are constrained to lie on the supporting
membrane surface. The parts of the polymeric chains
between the junctions are allowed to sample all the con-
figurations on one side of the supporting membrane, i.e.,
are constrained to lie in the half space defined by the
position of the membrane surface (see Fig. 1).

Several theoretical studies recently addressed the is-
sues pertaining to the modifications of elastic properties
of a membrane in contact with a polymer solution that
interacts with it [6-8]. Though the problem in this case
is simpler than in the surface polymer gel case, it appears
that certain features of the approach employed [8] can be
generalized to this case. Specifically, we shall derive the
curvature expansion of the free energy of a surface poly-
mer gel with deformed supporting surface and show that
the spontaneous curvature as well as the elastic modu-
lus of the “dressed” membrane become functions of the
polymer parameters, most notably the monomer-surface
interaction and the polymer bulk end-end separation.

We presume that the chains in between the junctions
are Gaussian and that their interaction with the support-
ing membrane surface, aside from the slip links where
they are pinned to the surface, is of a contact type, thus
simulating the screened electrostatic or other short range
interactions between polymer segments and the mem-
brane surface (see Fig. 1). The proposed formulation of
‘the surface gel on a nonplanar supporting surface prob-
lem is closely related to the formulation of similar poly-
mer problems in the bulk introduced by Edwards and
Freed [9] and is particularly suited for the application of
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O slip links
== polymer chains

FIG. 1.
Polymers are pinned to the supporting surface ro with slip
links of functionality 4 that are mobile along the surface. The
interaction of the chains between the slip links with the sur-
face is short ranged and described with the phenomenological
parameter k.

Schematic representation of the model system.

the Balian-Bloch-Duplantier [10] multiple surface scat-
tering Green function formalism, which gives a local cur-
vature expansion for a Helmholtz equation in a region
with deformed boundaries.

A major drawback of this approach is that we have
been unable to include volume interactions between poly-
mer chains, extensively studied in {3,4], into the formu-
lation in a consistent manner. However, this drawback is
substantially counterbalanced by the facts that, first of
all, analytic results are feasible in this approximation and
that the effect of even very complicated polymer-surface
interactions, as is the case in this model system, can be
readily investigated within the developed formalism.

II. MODEL

We define our system as a statistical ensemble of freely
mobile slip links confined to the supporting surface rq
(here and below the greek indices stand for coordinates
along the supporting surface) produced after N chains
N monomers long are cross-linked M times with func-
tionality 4. Following [9] the cross-links are taken to be
introduced by an external auxiliary field ¢(r) of a “cou-
pling strength” ,/u that produces polymer chains with
Green function Gy(r,r’; NV) if the chains are N segments

long. One can show through a diagrammatic expansion of

this Green function that if it is averaged over a Gaussian
distribution of ¢(r) this operation formally introduces
an arbitrary number of cross-links of functionality 4, dis-
tributed randomly through space and along the chains,
with the partition function

E(N,N)=<( //dsrg¢(r,r';N)d3r')N> Y
é
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for N chains.
If one now expands the Green function in terms of
JH¢(r) and then averages with ()4, the coefficient of

u™ contains all the terms with M cross-links randomly
distributed across the space and along the chains. Thus
the partition function of a system with M cross-links can
be formally written as

E(M,N,N)

1 [ M!'du N
= ey <<//d3rg¢(r,r';./\f)d3r'> >¢.

BT )
For the system discussed here the partition function
can be obtained along the lines of [9], except that the
auxiliary field should now be confined to the surface rq.
This would signify that it should affect not the equation
defining the Green function itself, but rather its bound-
ary condition at this surface. Also, if there exist other
interactions between the polymers and the surface, they
should also show up only in the boundary condition if
their range is short enough.
Putting everything together now we derive the parti-
tion function of our model system in the following com-
pact notation:

X < [5"1// d®rd®r'Gy(r, '; 5)] N>¢

M! d -
= f ), @

where G4(r,r'; s) is the Laplace transformed Green func-
tion of a free flight polymer, satisfying a Helmholtz-type
equation [11]

[V2 - 5] G(r,r';8) = —6%(x — ). (4)

Here we made a transformation r — 3@5, measuring the
spatial dimensions in units of %, where £ is the step

length. £~! stands for the inverse Laplace transform,
ie., L71f(s) = §,e*N f(s)ds = f(N) and the definition
of E4(p,N) is obvious. At the supporting membrane
surface r, the Green function satisfies [12]

/.
26l Ti%) Gy (rmsa)

+\/ﬁ¢(ra)g¢(rayr’;3) =0, (5)

where & is the strength of the contact membrane surface-
polymer interaction. It can be either repulsive (x > 0)
or attractive (x < 0). The last term in the above equa-
tion, proportional to /g, creates at random positions
along the supporting surface r, as well as along the poly-
mer chains junctions of fourfold functionality (slip links),

of “chemical potential” u per single junction, after the
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Green function is averaged over a Gaussian distribution

of the auxiliary field ¢(ry) [9],

Op = f Dg(ra) ()e~2 ! ¢2‘”“’d2"’/ / Do(ra)
xe~3] F)dna ()

The averaging over a Gaussian distribution of the auxil-
iary field preserves only terms with even powers of Vi

We shall now try to obtain an approximate solution of
the above model in the limit of % < 1 while separately
N > 1and M > 1, with the additional proviso that the
volume (or surface) density of chains £ (or % depending
on the sign of ) and the surface density of slip links 31%
are finite (thermodynamic limit).

We first of all cast the model in a form that will be
I
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appropriate for later formal developments. It is easiest
to obtain a power series solution of Eq. (5) in terms of
the free space solution Go(r,r'; s), i.e.,

e—Valr—r'|

o) — - )
go(l',l' 33) 47"|1"‘1"l

(7)

This series has been derived already by Balian and Bloch
in [10] and we merely quote their result. Introducing
I'(r,,r;s) as

I(ra,rg;s) + 25/dsygo(ra,r7;s)l"(r.y,rﬁ;s)

= 6%(ra —1p), (8)

one obtains the following expansion for the Green func-
tion:

Gy(r,1';8) = Go(r,r;8) + 2/ dSadSpGo(r,ra; 8)T(ra, ra; 8)VeGo(rs, r'; s)

+22 /// dSadSpdS,dS;Go(r,ra; 8)[(ra, r's; 8)

9Go(rs,r4; 8)

8n5
XI'(rs,rg;8)VgGo(rg,r’;8) +--- , 9)
|
where proximations have to be introduced in order to make the
5 problem tractable. First of all we shall introduce the ap-
V, = o F + ViP(re)- (10)  proximation of low polymer density that will make the
Ny

‘We might just add here that for a planar surface the nor-
mal derivative of the Green function, M%"ﬁ)-, is zero
and thus the expansion Eq. (9) is basically an expansion
in the curvature of the bounding surface.

Combining now both Egs. (8) and (9) we can derive

the partition function in a rather transparent form:
Eg(, N) = Ep(N) + 2 Tr Ug(ra,rp; N)
—Vi2 / A5 Us(eoraiN), (1)
where E3(V) = [f d3rd3r'Go(r,r'; V') = V is the volume

of the polymer solution with unperturbed boundaries and
the operator Uy (ra,rg; 8) is obtained as a solution of

Ugp(ra,rp;s) — 2/d57U¢(ra,r.7;s)V.,go(r.,,rﬁ;s)

=VoF(rq,rs;s), (12)

with dS,, being the area element of the surface r,, and
F(rq,rp;8) = / d*rd®r'Go(r, a3 8)Go(rs,1';8). (13)

Equations (11) and (12) represent just a more compact
formalization of the results already derived in [10] that
is conveniently suited for our purposes.

Formally the above equations define our model system.
Their solution is obviously nontrivial and additional ap-

evaluation of ()4 fairly tractable in the form of a power
series in the chemical potential of the slip links, p. Next
we shall resolve the integration over u by reverting to
the saddle-point ansatz and finally we shall use the ap-
proximation of the local tangential plane that explicitly
introduces the surface curvature dependence of the Green
functions to evaluate the different curvature terms in the
final expression for the partition function.

III. ANALYSIS

Starting from Eq. (11), E4(s,M)¥ can be written in
the form of a “virial” expansion in terms of the polymer
volume density. If this density is small enough we can
stop at the first order term, thus obtaining

- ~ M! dﬂ Nin(Eg(p,N))
_(M,N,N)—% . pM+1 © ’
M! dp

M! N1 (V42 Tr (Ug(raimraiV)),)
27 Jo #M—I-l

(14)

As we have done before [8] we now substantially reduce
the tedious algebra proceeding from the above equations
if we presume that |x| > QM;?BIEZL';Q. First of all we
solve Eq. (12) in the form of a formal series in ¢(ry).
This series solution of Eq. (12) for Uy(ra,rs;s) can be
effectively resummed and averaged over the Gaussian dis-
tribution of the auxiliary field ¢(r.), Eq. (6). Only even

[ —
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powers of ¢(r,) survive this averaging and we can re-
group the remaining terms, obtaining a power series in
4. By defining

Uo(rasrs; 8) = —n/d.S’,,F(ra,r.,;s)[‘(r,,,rﬁ;s) ,
A(rq,rp;s) = /dS.,go(ra,r.,;s)I‘(r,,,rg;s) ,
Wo(ra,rﬂ§ 8) = %/ dSydSeF(ra,Ty;8)
XD(ry,Te; 8)Gg H(re,Tg58) ,  (15)
we thus obtain the ¢ average of Uy(ra,rg; 8) in the form
of a series in the chemical potential of the pinning slip
links, p,
(Us(ras rﬁ53))¢ = Up(ra,rg; s)
+4u/dS.,A(ra,r~,;s)Wo(r.,,rg;s)
+16u2/ dS,dSeA(ra, re; 8)

XA(re,ry; 8)Wo(ry,ra;8) + -+,
(16)

where we redefined the chemical potential g —

1 ,
pA(ra,Ta; N), With A(re,ro;N) = 7/NVT3 > 1.

This relation stems from the conservation of the degrees
of freedom of the chain [9]. At each order of the p ex-

_ pansion we retain only the largest term while omitting

all the additional powers of A™!(ra,ra; N). The above
expansion in terms of y is convergent if % & 1, and we
can stop at the second order term.

The zero order term in this expansion, Eq. (16), is ex-
actly the one corresponding to the example treated pre-
viously [8], which corresponds to the case without any
surface pinning of the polymers through the slip links.

The approximate form of (Z4(p, N)),, is thus obtained
as

Ealis M)y =V +2 [ dS, UslramaiN),

= Eo(N) + pEr (V) + 328 (N) + -+,
a7

where aside from V all the other y terms in the expansion
can be obtained by comparison with Eq. (16) as

Eo(N) = Ep(N) + 2 L7 [Tr Up(ra,rs;8)] ,
Z,(N) =8 £ [’I‘r / dS,,A(ra,r7;s)Wg(ra,,rg;s)] ,
2,(N) = 64 £ [’I‘r f 45, dSA(Ta, Ty; s;
A (2, a3 8)Wo(Te, T5; s)] , (18)
where Zy(N) = L1 [ [ dbr] = V.

The final p integration in Eq. (14) is now of the form

M! n {E = 1,2 AN YR
E(M7N7N)5%fduelvl (BoW)+uEL (W) + 3472 (N)+ ) (M 1)1.1,4’ (19)
C

which is amenable to an analytic treatment through the
saddle-point approximation in the thermodynamic limit
of N »» 1 and M >» 1, yielding an approximate result

po= p.*(%—), where to the lowest order we obtain p* ~

—%:’: N) 4 .... The saddle-point free energy F is thus

obtained as [8 = (kT")7}]
BF = —InE(M, N, N)
Nl [E0(A0) + ES(N) + 352 )]
+(M + 1)lop* . (20)

Following the expansion of the statistical sum in terms
of the relative number of slip links, i.e., %—, we now ad-
ditionally presume that the supporting surface r, is de-
formed and we investigate the lowest order expansion of
the free energy in terms of the local curvatures of the de-
formed surface. We approach this problem by the Balian-
Bloch-Duplantier method [10] as was explained in detail
for a somewhat simpler case of polymer-surface interac-
tions [8].

The principle of the curvature expansion is simple.
First of all we note that the partition function Eq. (18)
contains different surface integrals of either Go(rq,rg; 3),

A(rq,rp;8), or F(rg,rs;s). Since all these quantities

depend only on the difference of the surface coordinates
in the arguments. we can expand them around the local
tangential plane up to the second order in the deviations
from that plane and then evaluate the surface integrals
explicitly. This expansion in terms of the deviations from
the local tangential plane is valid only as long as the
Green function is of a range smaller than the local curva-
tures. Practically this would mean that one can always
find a range of curvature values where the expansion of a
Yukawa-type Green function Eq. (7) in the vicinity of a
local tangential plane of a nonplanar surface is justified.

We write the equation of the bounding surface r, in
the reference frame of the tangential plane at r,, as

2 2
zw(w,y)g%(;w +}gw>+"" (21)

where R, and R,, are the two principal radii of curva-
ture at the point r, on the bounding surface. We can
now straightforwardly derive the form of the curvature
dependence up to and including the second order of the
Green function by expanding the coordinate dependence
in the vicinity of the tangential plane for each point along
the bounding surface. The only nonzero terms in the ex-

pansion of Go(rq,rg; 8) are the zero and the second order,
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thus giving
Go(ra,rs;8)
aZG(P) Ty Tg; 8
= G((,p)(ra,rﬂ;s)-{-%zi(:z:,y) 2 ézz’ & ) B

(22)

where the superscript p stands for the “planar” (i.e., zero
curvature) approximation of the quantity to which it is

affixed. Furthermore, %g;‘”ﬂﬂ)— obviously has only odd
terms in the expansion starting with

9Go(ra,Tg;s) o, Bza(a:,y)i_'_ 8zq(z,y) O
In, - dr Oz 8y By

ngp)(ra,rg;s) Feen

(23)
|

F(ra,rg;s) =/ d*rd®r’'Go(r,To; 8)Go(rs, r'; 8)

11 0Go(ry,To; 8) /
—[z on, vt

Ny

where the curvature dependence transpires more directly.
With all these provisos we can now evaluate the surface .
integrals in the defining equations Eq. (15) explicitly
order by order in the inverse curvature [8]. Though this
procedure is tedious it is nevertheless stralghtforward
The following relations are obtained:

/U(o)(rw,ra;s) dSc(f) = -

JUO e raie) dsP =

253(x + v/5) Ry

/ U (r,,rq;8) dSP

1

(0) (P) —
/A (TwyTa;8) dSY 2(n+\/_)

/A(z)(rw,ra;s) ds®

- v ()

1
/ W (ru, vas s) dSP) = Ry
1 1

f Wil (tu,Ta;s) dS®) =~ = Coe e

2\/— I{—i-\/—)Rw
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since the local normal is defined as n, = (1,
—%5%122, -—%8%11). The third origin of the curvature

dependence is the surface area element dS,, itself in Eqgs.
(8) and (15),

dS, 2 dSP + 1[Vz,(z,y)]* dSP. (24)
Finally, Egs. (22), (23), and (24) have to be averaged
locally over all the directions of the principal curvature
axes.

These fundamental dependencies of the Green function
Go(ra,rg; 8) and its normal derivative on the local cur-
vature now generate the corresponding functional depen-
dence for the surface Green function I'(ra,rg; s) through
the defining equation Eq. (8), and for F(rs,rg;s) that
can be written in an alternative form

0Go(ry,Tq;8) Go(ry,1a; 8)
on, Ony

dS&,dS.,:] , (25)

f Wéz) (rw,ra;8) dSt(f)

432(51-1- V's)
) [Riz,‘ g: i Q (T, o >] ’

(26)

which are, on the other hand the only quantities that we
need in evaluation of the partition functions Eq. (18).
This is so due to the fact that F(r,rg;s) depends only
on the difference between the coordinates and not on
their absolute values. This property then reverberates
through the defining equations all the way to the parti-

. tion function Eq. (18).

We now follow the definitions Eqs. (16), (15), and
(8) and thus as a result obtain a curvature expansion
for Eo(N), E1(N), and E(N). To the lowest order in
the average curvature 7 = 2 + 5 ), and in the
limit of long polymers, A > 1 we derive the following

R, le

" ciirvature expansion for the case k > 0 :

Eo(N) = V——/ds [ Nir
2N

1
HES 3 (Rf,+ wlRwZ)]+ o

b Bl

wlRwZ

S T DYV T P
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___1_) N —

RwlRwZ

wlsz] e, (27)

where w stands for the index of the coordinate over which
the final integration of the Tr operation is carried out; see
Eq. (17).

In the opposite case of x < 0. the spectrum of
Go(ra,r; N) has bound states leading to the following
dependence on N > 1 after the inverse Laplace trans-
form:

n

o(N)=V

1
o (g T

BF = BFy— (N —M)lnV — MhS,

(1) [W/ds - [ass

aid 21
K R,
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k? R?

[1]

IN
(V) = 4(n2N)e /dS [1___
+N (R2 RMR‘.,,>
e~ N
() = AT / s, [1_3 L 1L

k2 R

[1]

(28)

One should not forget at this point that all the above
relations were derived under the restriction that || >

M—E‘M This restriction is not partlcularly strin-
gent 1f one does not approach the region x &

IV 'RESULTS AND DISCUSSION

Takmg now equations B 9. (20) and (27) and assuming
that the surface density X 5. and the volume density 1‘\,,
are finite, we end up with the following form of the free
energy in the limit of K > 0 :

NN
T aE

1 1
45w (—E T R—wlRwZ)]

M\ |4VN 1 1 1 T 1
+() [_ﬁr Jasem-ige [ o= (EE “mr) ¥/ “‘S”Rwlsz]

S ONONIESE

ds., Rw N/dS Rw1sz]+ (29)

BFo contains irrelevant constants and combinatorial terms, while the second and the third terms describe the removal
of M out of a total of N volume translational degrees of freedom and the creation of M surface translational degrees
of freedom due to the existence of mobile surface slip links. The nature of the other terms in the free energy is also

straightforwardly discernible (see below).

In the opposite limit of £ < 0, assuming now that the two surface densities - and

following form of the free energy:

M —51\'; are finite, we derive the

ﬁf_ﬁfo_mns”(g;)[ wfds + 2 /dS— N/ds (R2 R, R )]

M\ 1 1 (M
‘(s—wﬁ/dswﬁz‘i(?;) (a:) o [dsemg+

where the second term now simply signifies that in this
limit the chains are mostly adsorbed to the surface as we
assumed that there are no volume interactions between
them.

The above two results should be compared with the
canonical form of the membrane elastic energy [1],

1\? 1
F = K/dS (Rw—R—> +KG/dSwm$
(31)

from which one obtains the contribution of the polymer-

(30)

*®

surface interactions to the curvature modulus (K.) and
spontaneous curvature radius (Rp), as well as to the mod-
ulus of Gaussian curvature (Kg).

On comparison with the results of Ref. [8], it is clear
that the fourth term in the free energy Eq. (29) cor-
responds to the statistically averaged contact excluded
volume interaction of the polymer solution with the de-
formed boundary, as the limit |«| > 0 assumed in deriv-
ing this result essentially reduces to the Dirichlet bound-
ary condition. We shall refer to this term in the free
energy as the contact term.

The term linear in SM' is the only one that vanishes

completely for a flat surface and is formally analogous to
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an effective polymer adsorption term [8]. As it is non-
zero only for a rough surface it stems from the “in plane
bridging” (see Ref. [8]) provided by the segments of the
polymers between different slip links. Obviously, it tends
to curve the surface towards the polymer rich side and
thus acts in opposition to the contact term.

The last term in Eq. (29), being of the second or-
der in gf , corresponds to the free energy of chain seg-
ments caught by the slip links and thus brought into the
immediate vicinity of the repulsive surface. Its zero and
first order curvature terms are both negative, reflecting
the predominant influence of the diminished entropy over
the interaction energy (2« per link) of the chains meeting
at the slip link confined to the supporting surface. This
term acts to expose a larger area to the polymer rich
side, thus tending to curve the supporting surface away
from it in concert with the contact term. It is also the
only term in the energy expansion that does not affect
the curvature modulus at all.

The final rescaling of the curvature modulus and spon-
taneous curvature in this limit then assume the form

M\ Re
K.— K. +2kT¢—f—kT( w)ﬂ\/—‘l‘ (32)
and
K. K. ¢~
—I—z-o-—i R +kT¢'RG [1+2n(sw) RG:I
M 4

where we introduced the radius of gyration, which in ap-
propriate units assumes the form Rg =
volume density of polymers ¢ = 1‘\}' I

The free energy of the system in the limit of & 3> 0 thus
emerges as being composed of three decoupled terms: the
surface energy of the bulk polymer solution due to the
repulsive interaction of the polymers with the surface,
the energy of those polymer chains that happen to join
different slip links and lie in the plane of the unperturbed
surface, and the surface energy of slip links themselves,
since at the points of cross-linking different segments of
the chains make contact with the (repulsive) surface. Af-
ter relaxing the limit % < 1 we can presume that only
the last two mechanisms will remain in making a substan-
tial contribution to the total free energy. Unfortunately,
the relaxing of this limit makes the whole calculation
much more demanding, probably due to the fact that
the system goes through a surface gelation transition.

In the case of attractive interactions between the
chains and the surface the third term corresponds to the
free energy of a polymer bound to a deformed surface
with energy k per surface area. The term in the square
brackets is simply the adsorption energy [12]. The term
linear in curvature prefers bending towards the polymer
rich side and thus acts exactly in the opposite direction
to the analogous term in the contact term Eq. (29). This
is also the only term in the whole free energy expression
that is linear in curvature.

VN, and the

The rescaling of the curvature modulus obviously
stems in this case from three different mechanisms which,
interestingly enough, all act in the direction of destabiliz-
ing the curvature modulus. The first contribution, being
linear in %, comes from the adsorption energy and is of
the same form as in the case when no pinning to slip links
is present [8]. The second and third contributions, being
linear and quadratic in g’f , respectively, are obviously
due to the presence of surface-bound slip links. The lin-
ear term is due to the energy difference in the pinning at
the slip link as compared to the “soft” adsorption, while
the third term is due to the energy difference of an ad-
sorbed portion of the chain when it is pinned by two slip
links, at the beginning and at the end, and when it is
“softly” adsorbed.

The final rescaling of the elastic properties of the
“dressed” membrane can in this limit be cast into the
form

KcﬂKc—Z(E—)Ré

S
MY _, (M ? N -
(%) [Hz(sw) ) |7
(34)
and
K. K. (N\2
—‘EZ——)RO‘*‘(S‘O)FE’*' . (35)

The modifications in the Gaussian modulus are im-
portant because they extend only over the area occupied
by polymers and are thus position dependent {otherwise

~ they would make no contribution to the equations de-

termining the shape of the “dressed” membrane) In
the case of repulsive polymer-membrane interactions, i.e.,
& > 0, we obtain the following form for the change in the
Gaussian curvature modulus:

3
Ke — K + ¢2R (M> [Rg - -R—G]

3y Se K/
(MY girz (36)
2 \ S, ¢ :

Since the signs of different contributions in this case are
not uniform there is no general statement that one could
make regarding the proliferation of handles.

In the opposite case of attractive polymer-membrane
interactions, & < 0, the Gaussian curvature modulus has
a very simple dependence on the polymer parameters:

N
KG—)KG+<-S~)R2G+”' (37)

that in conjunction with Eq. (34) favors the prolifera-
tion of handles. The last result is interesting also from



the point of view of a recent analysis of the modifications
in the Gaussian curvature modulus of partially polymer-
ized surfactant membranes [5]. Clearly, for large negative
values of k our problem is isomorphous to the problem of
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polymers embedded in the membrane. In case there are
no interactions between embedded polymer chains the re-
sult derived by Kozlov and Helfrich [5] for this particular
model system reduces exactly to Eq. (37).

[1] E.A. Evans and R. Skalak, Mechanics and Thermo-
dynamics of Biomembranes (CRC Press, Boca Raton,
1980).

[2] B.T. Stokke, A. Mikkelsen, and A. Elgsaeter, Eur. Bio-
phys. J. 13, 203; 13, 219 (1986); Biophys. J. 49, 319
(1986). :

[3] D.H. Boal, Biophys. J. 87, 521 (1994); D.H. Boal, U.
Seifert, and J.C. Shillcock, Phys. Rev. E 48, 4274 (1993);
D.H. Boal, U. Seifert, and A. Zilker, Phys. Rev. Lett. 69,
3405 (1992). ' -

[4] R. Everaers, L.S. Graham, E. Sackmann, and M.J. Zuck-
ermann (unpublished).

[5] M.M. Kozlov and W. Helfrich, Langmuir 9, 2761 (1993).

[6] P.-G. de Gennes, J. Phys. Chem. 94, 8407 (1990).

[7] D. Hone, H. Ji, and P.A. Pincus, Macromolecules 20,
2543 (1987); H. Ji and D. Hone, ibid. 21, 2600 (1988);
J.T. Brooks, C.M. Marques, and M.E. Cates, J. Phys.
(France) IT 1, 673 (1991).

[8] R. Podgornik, Europhys. Lett. 21, 245 (1993).

[9] K.F. Freed, Adv. Chem. Phys. 22, 1 (1980); S. F. Ed-
wards and K. F. Freed, J. Phys. C 8, 739 (1970); 3, 750
(1970); 3, 760 (1970). '

[10] R. Balian and C. Bloch, Ann. Phys. 60, 401 (1970); 84,
559 (1974); B. Duplantier, Physica A 168, 179 (1990).

[11] K.F. Freed, Renormalization Group Theory of Macro-
molecules (Wiley & Sons, New York, 1987).

[12] E. Eisenriegler, Polymers Near Surfaces (World Scien-
tific, Singapore, 1993).



